Читайте также:
|
|
Среда называется упругой, если между ее частицами существуют силы взаимодействия, препятствующие какой-либо деформации этой среды. Когда какое-либо тело совершает колебания в упругой среде, то оно воздействует на частицы среды, прилегающие к телу, и заставляет их совершать вынужденные колебания. Среда вблизи колеблющегося тела деформируется, и в ней возникают упругие силы. Эти силы воздействуют на все более удаленные от тела частицы среды, выводя их из положения равновесия. Постепенно все частицы среды вовлекаются в колебательное движение.
Тела, которые вызывают распространяющиеся в среде упругие волны, являются источниками волн (колеблющиеся камертоны, струны музыкальных инструментов).
Упругими волнами называются механические возмущения (деформации), производимые источниками, которые распространяются в упругой среде. Упругие волны в вакууме распространяться не могут.
При описании волнового процесса среду считают сплошной и непрерывной, а ее частицами являются бесконечно малые элементы объема (достаточно малые по сравнению с длиной волны), в которых находится большое количество молекул. При распространении волны в сплошной среде частицы среды, участвующие в колебаниях, в каждый момент времени имеют определенные фазы колебания.
Геометрическое место точек среды, колеблющихся в одинаковых фазах, образует волновую поверхность.
Волновую поверхность, отделяющую колеблющиеся частицы среды от частиц, еще не начавших колебаться, называют фронтом волны В зависимости от формы фронта волны различают волны плоские, сферические и др.
Линия, проведенная перпендикулярно волновому фронту в направлении распространения волны, называется лучом. Луч указывает направление распространения волны.;;
Механические волны бывают разных видов. Если при распространении волны частицы среды испытывают смещение в направлении, перпендикулярном направлению распространения, такая волна называется поперечной.
Примером волны такого рода могут служить волны, бегущие по натянутому резиновому жгуту (рис. 2.6.1) или по струне. Если смещение частиц среды происходит в направлении распространения волны, такая волна называется продольной. Волны в упругом стержне (рис. 2.6.2) или звуковые волны в газе являются примерами таких волн. Волны на поверхности жидкости имеют как поперечную, так и продольную компоненты. Как в поперечных, так и в продольных волнах не происходит переноса вещества в направлении распространения волны. В процессе распространения частицы среды лишь совершают колебания около положений равновесия. Однако волны переносят энергию колебаний от одной точки среды к другой.
В плоской в олне волновые поверхности представляют собой плоскости, перпендикулярные к направлению распространения волны (рис. 15.1). Плоские волны можно получить на поверхности воды в плоской ванночке с помощью колебаний плоского стержня.
Продольные механические волны могут распространяться в любых средах – твердых, жидких и газообразных. Если в одномерной модели твердого тела один или несколько шариков сместить в направлении, перпендикулярном цепочке, то возникнет деформация сдвига. Деформированные при таком смещении пружины будут стремиться возвратить смещенные частицы в положение равновесия. При этом на ближайшие несмещенные частицы будут действовать упругие силы, стремящиеся отклонить их от положения равновесия. В результате вдоль цепочки побежит поперечная волна. В жидкостях и газах упругая деформация сдвига не возникает.
Если один слой жидкости или газа сместить на некоторое расстояние относительно соседнего слоя, то никаких касательных сил на границе между слоями не появляется. Силы, действующие на границе жидкости и твердого тела, а также силы между соседними слоями жидкости всегда направлены по нормали к границе – это силы давления. То же относится к газообразной среде. Следовательно, поперечные волны не могут существовать в жидкой или газообразной средах.
Значительный интерес для практики представляют простые гармонические или синусоидальные волны. Они характеризуются амплитудой A колебания частиц, частотой f и длиной волны λ. Синусоидальные волны распространяются в однородных средах с некоторой постоянной скоростью υ. Смещение y(x, t) частиц среды из положения равновесия в синусоидальной волне зависит от координаты x на оси OX, вдоль которой распространяется волна, и от времени t по закону:
|
где – так называемое волновое число, ω = 2πf – круговая частота. На рис. 2.6.4 изображены «моментальные фотографии» поперечной волны в два момента времени: t и t + Δt. За время Δt волна переместилась вдоль оси OX на расстояние υΔt. Волны, все точки которых перемещаются с одной и той же скоростью, принято называть бегущими (в отличие от стоячих волн, см. далее).
Длиной волны λ называют расстояние между двумя соседними точками на оси OX, колеблющимися в одинаковых фазах. Расстояние, равное длине волны λ, волна пробегает за период T, следовательно, λ = υT, где υ – с корость распространения волны. Для любой выбранной точки на графике волнового процесса (например, для точки A на рис. 2.6.4) выражение ωt – kx не изменяется по величине. С течением времени t изменяется и координата x этой точки. Через промежуток времени Δt точка A переместится по оси OX на некоторое расстояние Δx = υΔt. Следовательно:
ωt – kx = ω(t + Δt) – k(x + Δx) = const или ωΔt = kΔx. |
Отсюда следует:
![]() |
Таким образом, бегущая синусоидальная волна обладает двойной периодичностью – во времени и пространстве. Временной период равен периоду колебаний T частиц среды, пространственный период равен длине волны λ. Волновое число является пространственным аналогом круговой частоты
Обратим внимание на то, что уравнение
Дата добавления: 2015-01-30; просмотров: 100 | Поможем написать вашу работу | Нарушение авторских прав |