Читайте также:
|
|
In a room where chemistry is taught or practiced, a chart called the periodic table is almost certain to be found hanging on the wall. This chart shows all the known elements and gives a good deal of information about each.
Many atomic masses were determined as a direct result of Dalton’s postulates and the work that they stimulated, and scientists attempted to relate the atomic masses of the elements to the elements’ properties. This work culminated in the development of the periodic table by Dmitri Mendeleyev (1834-1907) and independently by Lothar Meyer (1830-1895). Because Mendeleyev did more with his periodic table, he is often given sole credit for its development.
Mendeleyev put the elements known in the 1860s in ascending order according to their atomic masses (atomic numbers had not yet been defined) and noticed that the properties of every seventh known element were similar. He arranged the elements in a table, with elements having similar properties in the same group.
The classic Periodic Law formulation of D.I.Mendeleev is as states: the properties of elements and therefore the properties of the simple and complex substances they form are in the periodic dependence on their atomic weight.
Nowadays the formulation is: the properties of elements and therefore the properties of the simple and complex substances they form are in the periodic dependence on the charge of the atomic nuclei.
The letters in the boxes are the symbols for the elements; these abbreviations are based on the current element names or the original names. The number shown above each symbol is the atomic number (number of protons) for that element. For example, carbon (C) has atomic number 6, and lead (Pb) has atomic number 82. Most of the elements are metals. Metals have characteristic physical properties such as efficient conduction of heat and electricity, malleability (they can be hammered into thin sheets), ductility (they can be pulled into wires), and (often) a lustrous appearance. Chemically, metals tend to lose electrons to form positive ions. For example, copper is a typical metal. It is lustrous (although it tarnishes readily); it is an excellent conductor of electricity (it is widely used in electrical wires); and it is readily formed into various shapes, such as pipes for water systems. Copper is also found in many salts, such as the beautiful blue copper sulfate, in which copper is present as Cu2+ ions. Copper is a member of the transition metals—the metals shown in the center of the periodic table.
The relatively few nonmetals appear in the upper-right corner of the table (to the right of the line from boron to astatine), except hydrogen, a nonmetal that resides in the upper-left corner. The nonmetals lack the physical properties that characterize the metals. Chemically, they tend to gain electrons in reactions with metals to form negative ions. Nonmetals often bond to each other by forming covalent bonds. For example, chlorine is a typical nonmetal. Under normal conditions it exists as Cl2 molecules; it reacts with metals to form salts containing Cl- ions (NaCl, for example); and it forms covalent bonds with nonmetals (for example, hydrogen chloride gas, HCl).
The periodic table is arranged so that elements in the same vertical columns (called groups or families) have similar chemical properties. For example, all of the alkali metals, members of Group 1A—lithium (Li), sodium (Na), potassium (K), rubidium (Rb), cesium (Cs), and francium (Fr)—are very active elements that readily form ions with a 1+ charge when they react with nonmetals.
The members of Group 2A—beryllium (Be), magnesium (Mg), calcium (Ca), strontium (Sr), barium (Ba), and radium (Ra)—are called the alkaline earth metals. They all form ions with a 2+ charge when they react with nonmetals.
The halogens, the members of Group 7A—fluorine (F), chlorine (Cl), bromine (Br), iodine (I), and astatine (At)—all form diatomic molecules. Fluorine, chlorine, bromine, and iodine all react with metals to form salts containing ions with a 1- charge (F-,Cl-,Br-, and I-). The members of Group 8A—helium (He), neon (Ne), argon (Ar), krypton (Kr), xenon (Xe), and radon (Rn)—are known as the noble gases. They all exist under normal conditions as monatomic (single-atom) gases and have little chemical reactivity.
The horizontal rows of elements in the periodic table are called periods. Horizontal row 1 is called the first period (it contains H and He); row 2 is called the second period (elements Li through Ne); and so on.
The present form of the periodic table was conceived independently by two chemists: the German Julius Lothar Meyer (1830–1895) and Dmitri Ivanovich Mendeleev (1834–1907), a Russian. Usually Mendeleev is given most of the credit, because it was he who emphasized how useful the table could be in predicting the existence and properties of still unknown elements. For example, in 1872 when Mendeleev first published his table, the elements gallium, scandium, and germanium were unknown. Mendeleev correctly predicted the existence and properties of these elements from gaps in his periodic table. The data for germanium (which Mendeleev called “ekasilicon”) are shown in Table 7.3. Note the excellent agreement between the actual values and Mendeleev’s predictions, which were based on the properties of other members in the group of elements similar to germanium.
Using his table, Mendeleev also was able to correct several values for atomic masses. For example, the original atomic mass of 76 for indium was based on the assumption that indium oxide had the formula InO. This atomic mass placed indium, which has metallic properties, among the nonmetals. Mendeleev assumed the atomic mass was probably incorrect and proposed that the formula of indium oxide was really In2O3. Based on this correct formula, indium has an atomic mass of approximately 113, placing the element among the metals. Mendeleev also corrected the atomic masses of beryllium and uranium.
Дата добавления: 2015-09-11; просмотров: 244 | Поможем написать вашу работу | Нарушение авторских прав |