Читайте также:
|
|
Каноническое уравнение параболы в прямоугольной системе координат:
(или
, если поменять местами оси).
Число p называется фокальным параметром, оно равно расстоянию от фокуса до директрисы[1]. Поскольку каждая точка параболы равноудалена от фокуса и директрисы, то и вершина — тоже, поэтому она лежит между фокусом и директрисой на расстоянии от обоих.
[показать]Вывод |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Квадратное уравнение при
также представляет собой параболу и графически изображается той же параболой, что и
, но в отличие от последней имеет вершину не в начале координат, а в некоторой точке
, координаты которой вычисляются по формулам:
где
— дискриминант
Ось её симметрии проходит через вершину параллельно оси ординат, при a>0 (a<0) фокус лежит на этой оси над (под) вершиной на расстоянии a/4, а директриса — под (над) вершиной на таком же расстоянии и параллельна оси абсцисс. Уравнение может быть представлено в виде
, а в случае переноса начала координат в точку
каноническим уравнением. Таким образом для каждого квадратного уравнения можно найти систему координат такую, что в этой системе оно представляется каноническим. При этом
.
Дата добавления: 2015-09-10; просмотров: 72 | Поможем написать вашу работу | Нарушение авторских прав |