Студопедия
Главная страница | Контакты | Случайная страница

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатика
ИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханика
ОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторика
СоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансы
ХимияЧерчениеЭкологияЭкономикаЭлектроника

Уравнения

Читайте также:
  1. Выбор формы уравнения регрессии
  2. Вывод канонического уравнения параболы.
  3. Геометрические свойства параболы (исследование канонического уравнения).
  4. Гипербола. Вывод канонического уравнения. Свойства. Асимптоты
  5. Гиперболические уравнения
  6. Глава 19 Огонь в уравнениях
  7. Дифференциальные уравнения первого порядка.
  8. Дифференциальные уравнения первого порядка.
  9. Дифференциальные уравнения.
  10. Квадратные уравнения

Каноническое уравнение параболы в прямоугольной системе координат:

(или , если поменять местами оси).

Число p называется фокальным параметром, оно равно расстоянию от фокуса до директрисы[1]. Поскольку каждая точка параболы равноудалена от фокуса и директрисы, то и вершина — тоже, поэтому она лежит между фокусом и директрисой на расстоянии от обоих.

[показать]Вывод
Уравнение директрисы : , фокус — , таким образом начало координат — середина отрезка . По определению параболы для любой точки , лежащей на ней выполняется равенство . и , тогда равенство приобретает вид: . После возведения в квадрат и некоторых преобразований получается равносильное уравнение .

Квадратное уравнение при также представляет собой параболу и графически изображается той же параболой, что и , но в отличие от последней имеет вершину не в начале координат, а в некоторой точке , координаты которой вычисляются по формулам:

где — дискриминант

Ось её симметрии проходит через вершину параллельно оси ординат, при a>0 (a<0) фокус лежит на этой оси над (под) вершиной на расстоянии a/4, а директриса — под (над) вершиной на таком же расстоянии и параллельна оси абсцисс. Уравнение может быть представлено в виде , а в случае переноса начала координат в точку каноническим уравнением. Таким образом для каждого квадратного уравнения можно найти систему координат такую, что в этой системе оно представляется каноническим. При этом .




Дата добавления: 2015-09-10; просмотров: 72 | Поможем написать вашу работу | Нарушение авторских прав

Радіонуклідні методи. | Б) Характеристика методів візуалізації статевої системи, показання до застосування, їх можливості та обмеження. | Променева анатомія та фізіологія сечової системи. | Променева семіотика захворювань сечової системи та алгоритми променевого дослідження. | Інфекція сечовидільних шляхів. | Синдром об’ємного утворення. | Променева семіотика захворювань жіночих статевих органів. | Синдром об’ємного збільшення яєчника. | Методи дослідження | Променева анатомія |


lektsii.net - Лекции.Нет - 2014-2025 год. (0.006 сек.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав