Читайте также:
|
|
Выборочная средняя
Это если все значения признака выборки различны.
Если же все значения имеют частоты n1,n2, то
Выборочная дисперсия
Если все значения признака выборки различны.
Если же все значения имеют частоты n1,n2, то
21.Статистическое оценивание: метод моментов, метод максимального правдоподобия.
. Ме́тод максима́льного правдоподо́бия или метод наибольшего правдоподобия в математической статистике — это метод оценивания неизвестного параметра путём максимизации функции правдоподобия.Пусть есть выборка из распределения
, где
— неизвестные параметры. Пусть
— функция правдоподобия, где
. Точечная оценка
называется оце́нкой максима́льного правдоподо́бия параметра . Таким образом оценка максимального правдоподобия — это такая оценка, которая максимизирует функцию правдоподобия при фиксированной реализации выборки.
Ме́тод моме́нтов — метод оценки неизвестных параметров распределений в математической статистике и эконометрике, основанный на предполагаемых свойствах моментов. Пусть случайная величина (вектор, матрица и т. д.) X имеет некоторое распределение , зависящее от параметров
. Пусть для функций (называемых моментами или моментными функциями)
, интегрируемых по мере
, выполнены условия на моменты
Пусть — выборка случайной величины X. Предполагается, что соотношения аналогичные условиям на моменты выполнены и для выборки, а именно вместо математического ожидания в условиях на моменты необходимо использовать выборочные средние:
причем в данном представлении (когда справа от равенства — ноль) достаточно использовать просто суммы вместо средних.
Оценки, получаемые из решения этой системы уравнений (выборочных условий на моменты), называются оценками метода моментов. Название метода связано с тем, что чаще всего в качестве функций выступают функции степенного вида, математические ожидания от которых в теории вероятностей и математической статистике принято называть моментами.
Если моментные функции непрерывны, то оценки метода моментов состоятельны.
22. Интервальные оценки для параметров нормального закона распределения.
Интервальный метод оценивания параметров распределения случайных величин заключается в определении интервала (а не единичного значения), в котором с заданной степенью достоверности будет заключено значение оцениваемого параметра.Интервальная оценка характеризуется двумя числами – концами интервала, внутри которого предположительно находится истинное значение параметра. Иначе говоря, вместо отдельной точки для оцениваемого параметра можно установить интервал значений, одна из точек которого является своего рода "лучшей" оценкой. Интервальные оценки являются более полными и надежными по сравнению с точечными, они применяются как для больших, так и для малых выборок. Совокупность методов определения промежутка, в котором лежит значение параметра Т, получила название методов интервального оценивания. К их числу принадлежит метод Неймана.Постановка задачи интервальной оценки параметров заключается в следующем
Имеется: выборка наблюдений (x1, x2, …, xn) за случайной величиной Х. Объем выборки n фиксирован.
Необходимо с доверительной вероятностью g = 1– a определить интервал t0 – t1 (t0 < t1), который накрывает истинное значение неизвестного скалярного параметра Т (здесь, как и ранее, величина Т является постоянной, поэтому некорректно говорить, что значение Т попадает в заданный интервал).
Дата добавления: 2015-01-12; просмотров: 100 | Поможем написать вашу работу | Нарушение авторских прав |