Читайте также:
|
|
Анализ интенсивности изменения во времени осуществляется с помощью показателей, получаемых в результате сравнения уровней, к таким показателям относятся: абсолютный прирост, темп роста, темп прироста, абсолютное значение одного процента прироста.
Система средних показателей включает средний уровень ряда, средний абсолютный прирост, средний темп роста, средний темп прироста.
Показатели анализа динамики могут вычисляться на постоянной и переменных базах сравнения. При этом принято называть сравниваемый уровень отчетным, а уровень, с которым производится сравнение, — базисным.
Для расчета показателей анализа динамики на постоянной базе каждый уровень ряда сравнивается с одним и тем же базисным уровнем. В качестве базисного выбирается либо начальный уровень в ряду динамики, либо уровень, с которого начинается какой-то новый этап развития явления. Исчисляемые при этом показатели называются базисными
Для расчета показателей анализа динамики на переменной базе каждый последующий уровень ряда срaвнивaeтся с предыдущим. Вычисленные таким образом показатели анализа динамики называются цепными
Важнейшим показателем анализа динамики является абсолютный прирост (сокращение), т.е. абсолютное изменение, характеризующее увеличение или уменьшение уровня ряда за определенный промежуток времени. Абсолютный прирост с переменной базой называют скоростью роста.
Абсолютный прирост цепной:
Абсолютный прирост базисный
где yi - уровень сравниваемого периода;
yi-1 – уровень предшествующего периода;
y0 – уровень базисного периода.
Коэффициент роста (снижения) показывает, во сколько раз сравниваемый уровень больше уровня, с которым производится сравнение (если этот коэффициент больше единицы) или какую часть уровня, с которым производится сравнение, составляет сравниваемый уровень (если он меньше единицы). Темп роста всегда представляет собой положительное число.
Коэффициент роста цепной
Коэффициент роста базисный
Темп роста цепной
Темп роста базисный
Темп прироста (сокращения) показывает, на сколько процентов сравниваемый уровень больше или меньше уровня, принятого за базу сравнения, и вычисляется как отношение абсолютного прироста к абсолютному уровню, принятому за базу сравнения.
Темп прироста может быть положительным, отрицательным или равным нулю, выражается он в процентах и долях единицы (коэффициенты прироста).
Темп прироста (цепной)
Темп прироста (базисный)
Чтобы правильно оценить значение полученного темпа прироста, его рассматривают в сопоставлении с показателем абсолютного прироста. Результат выражают показателем, который называют абсолютным значением (содержанием) одного процента прироста и рассчитывают как отношение абсолютного прироста к темпу прироста за тот же период времени, %:
Средний уровень ряда характеризует обобщённую величину абсолютных уровней. Он рассчитывается по средней хронологической, т. е. по средней исчисленной из значений, изменяющихся во времени.
Методы расчета среднего уровня интервального и моментного рядов динамики различны.
Для интервальных рядов динамики из абсолютных уровней средний уровень за период времени определяется по формуле средней арифметической:
Средний уровень моментного ряда динамики с равностоящими уровнями определяется по формуле средней хронологической моментного ряда:
Обобщающий показатель скорости изменения уровней во времени - средний абсолютный прирост (убыль), представляющий собой обобщенную характеристику индивидуальных абсолютных приростов ряда динамики. По цепным данным об абсолютных приростах за ряд лет можно рассчитать средний абсолютный прирост как среднюю арифметическую простую:
Средний абсолютный прирост определим через накопленный (базисный) абсолютный прирост (Δуб) - Для случая равных интервалов применим следующую формулу:
Средний темп роста (снижения) — обобщенная характеристика индивидуальных темпов роста ряда динамики. Если значение признака образуется как произведение отдельных вариантов, нужно применять среднюю геометрическую.
Поскольку средний темп роста представляет собой средний коэффициент роста, выраженный в процентах ( =
*100), то для равностоящих рядов динамики расчеты по средней геометрической сводятся к исчислению средних коэффициентов роста из цепных коэффициентов роста (по «цепному способу»):
Базисный коэффициент получается непосредственно как частное от деления уровня последнего периода уп на уровень базисного периода у0.
Тогда формула для расчета среднего коэффициента роста для равностоящих рядов динамики (по «базисному способу»):
Средние темпы прироста (сокращения) рассчитываются на основе средних темпов роста, вычитанием из последних 100 %. Соответственно при исчислении средних коэффициентов прироста из значений коэффициентов роста вычитается единица:
Дата добавления: 2014-12-19; просмотров: 224 | Поможем написать вашу работу | Нарушение авторских прав |