Читайте также:
|
|
Вспоминаем, что линейное неоднородное уравнение второго порядка с постоянными коэффициентами имеет вид:
Пример 4
Найти общее решение дифференциального уравнения второго порядка
Решение: В правой части данного уравнения находится дробь, поэтому сразу можно сказать, что метод подбора частного решения не прокатывает. Используем метод вариации произвольных постоянных.
Ничто не предвещает грозы, начало решения совершенно обычное:
Найдем общее решение соответствующего однородного уравнения:
Составим и решим характеристическое уравнение:
– получены сопряженные комплексные корни, поэтому общее решение:
Обратите внимание на запись общего решения – если есть скобки, то их раскрываем.
Теперь проделываем практически тот же трюк, что и для уравнения первого порядка: варьируем константы , заменяя их неизвестными функциями
. То есть, общее решение неоднородного уравнения будем искать в виде:
, где
– пока ещё неизвестные функции.
Далее необходимо решить систему двух уравнений с двумя неизвестными:
Похоже на свалку бытовых отходов, но сейчас всё рассортируем.
В качестве неизвестных выступают производные функций . Наша цель – найти производные
, причем найденные производные должны удовлетворять и первому и второму уравнению системы.
Откуда берутся «игреки»? Их приносит аист. Смотрим на полученное ранее общее решение и записываем:
,
Найдем производные:
С левыми частями разобрались. Что справа?
– это правая часть исходного уравнения, в данном случае:
Коэффициент – это коэффициент при второй производной:
На практике почти всегда , и наш пример не исключение.
Всё прояснилось, теперь можно составить систему:
Систему обычно решают по формулам Крамера, используя стандартный алгоритм. Единственное отличие состоит в том, что вместо чисел у нас функции.
Найдем главный определитель системы:
Итак: , значит, система имеет единственное решение.
Едем дальше:
Находим производную:
Но это еще не всё, пока мы нашли только производную.
Сама функция восстанавливается интегрированием:
Здесь добавляем «нормальную» константу
Разбираемся со второй функцией:
Здесь добавляем «нормальную» константу
На заключительном этапе решения вспоминаем, в каком виде мы искали общее решение неоднородного уравнения? В таком:
Нужные функции только что найдены!
Осталось выполнить подстановку и записать ответ:
Ответ: общее решение: .
Дата добавления: 2015-02-16; просмотров: 90 | Поможем написать вашу работу | Нарушение авторских прав |