Студопедия  
Главная страница | Контакты | Случайная страница

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатика
ИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханика
ОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторика
СоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансы
ХимияЧерчениеЭкологияЭкономикаЭлектроника

Метод вариации произвольных постоянных для линейного неоднородного уравнения второго порядка с постоянными коэффициентами.

Читайте также:
  1. D. Прочие методы регулирования денежно-кредитной сферы
  2. I метод отпечатка на липкой ленте.
  3. I. АДМИНИСТРАТИВНЫЕ МЕТОДЫ УПРАВЛЕНИЯ ПРИРОДООХРАННОЙ ДЕЯТЕЛЬНОСТЬЮ
  4. I. Методические рекомендации
  5. I. Методы эмпирического исследования.
  6. I. ОРГАНИЗАЦИОННО-МЕТОДИЧЕСКИЙ РАЗДЕЛ
  7. I.4. МЕТОДЫ ИЗУЧЕНИЯ СПЕЦКУРСА
  8. II Биохимические методы
  9. II Методы очистки выбросов от газообразных загрязнителей.Метод абсорбции.
  10. II Методы очистки сточных вод от маслопродуктов.Принцип работы напорного гидроциклона.

Вспоминаем, что линейное неоднородное уравнение второго порядка с постоянными коэффициентами имеет вид:

Пример 4

Найти общее решение дифференциального уравнения второго порядка

Решение: В правой части данного уравнения находится дробь, поэтому сразу можно сказать, что метод подбора частного решения не прокатывает. Используем метод вариации произвольных постоянных.

Ничто не предвещает грозы, начало решения совершенно обычное:

Найдем общее решение соответствующего однородного уравнения:

Составим и решим характеристическое уравнение:


– получены сопряженные комплексные корни, поэтому общее решение:

Обратите внимание на запись общего решения – если есть скобки, то их раскрываем.

Теперь проделываем практически тот же трюк, что и для уравнения первого порядка: варьируем константы , заменяя их неизвестными функциями . То есть, общее решение неоднородного уравнения будем искать в виде:

, где пока ещё неизвестные функции.

Далее необходимо решить систему двух уравнений с двумя неизвестными:

Похоже на свалку бытовых отходов, но сейчас всё рассортируем.

В качестве неизвестных выступают производные функций . Наша цель – найти производные , причем найденные производные должны удовлетворять и первому и второму уравнению системы.

Откуда берутся «игреки»? Их приносит аист. Смотрим на полученное ранее общее решение и записываем:

,

Найдем производные:

С левыми частями разобрались. Что справа?

– это правая часть исходного уравнения, в данном случае:

Коэффициент – это коэффициент при второй производной:

На практике почти всегда , и наш пример не исключение.

Всё прояснилось, теперь можно составить систему:

Систему обычно решают по формулам Крамера, используя стандартный алгоритм. Единственное отличие состоит в том, что вместо чисел у нас функции.

Найдем главный определитель системы:

Итак: , значит, система имеет единственное решение.

Едем дальше:

Находим производную:

Но это еще не всё, пока мы нашли только производную.
Сама функция восстанавливается интегрированием:

Здесь добавляем «нормальную» константу

Разбираемся со второй функцией:

Здесь добавляем «нормальную» константу

На заключительном этапе решения вспоминаем, в каком виде мы искали общее решение неоднородного уравнения? В таком:

Нужные функции только что найдены!

Осталось выполнить подстановку и записать ответ:

Ответ: общее решение: .




Дата добавления: 2015-02-16; просмотров: 28 | Поможем написать вашу работу | Нарушение авторских прав




lektsii.net - Лекции.Нет - 2014-2024 год. (0.009 сек.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав