Читайте также:
|
|
Докажем правило дифференцирования частного двух функций (дроби) . Стоит оговориться, что g(x) не обращается в ноль ни при каких x из промежутка X.
По определению производной
Пример.
Выполнить дифференцирование функции .
Решение.
Исходная функция представляет собой отношение двух выражений sinx и 2x+1. Применим правило дифференцирования дроби:
Не обойтись без правил дифференцирования суммы и вынесения произвольной постоянной за знак производной:
В заключении, давайте соберем все правила в одном примере.
Пример.
Найти производную функции , где a – положительное действительное число.
Решение.
А теперь по порядку.
Первое слагаемое .
Второе слагаемое
Третье слагаемое
Собираем все вместе:
Дата добавления: 2015-01-30; просмотров: 138 | Поможем написать вашу работу | Нарушение авторских прав |