Студопедия
Главная страница | Контакты | Случайная страница

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатика
ИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханика
ОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторика
СоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансы
ХимияЧерчениеЭкологияЭкономикаЭлектроника

Возникновение и свойства рентгеновского излучения.

Читайте также:
  1. V. ЭЛЕКТРИЧЕСКИЕ И МАГНИТНЫЕ СВОЙСТВА ВЕЩЕСТВА
  2. Агрессивные и коррозионные свойства грунтов и грунтовых вод
  3. Агрохимические свойства почв и определение индекса окультуренности.
  4. Активные диэлектрики. Состав, свойства, применение
  5. Акустические свойства горных пород. Основные параметры. Связь с вещественным и фазовым составом, структурой пород и термобарическими условиями.
  6. Алгоритм. Свойства алгоритмов. Способы записи алгоритмов. Базовые структуры алгоритмов. Примеры.
  7. Альгинатные оттискные материалы. Состав, свойства, особенности работы при получении оттиска и модели
  8. Аномальные свойства воды и их причины.
  9. Античные государства Северного Причерноморья. Их возникновение, организация и история по данным археологии..
  10. Ароматерапия. Определение. Физические свойства и химический состав эфирных масел. Виды лечения ароматами.

Источником рентгеновских лучей является рентгеновская трубка, в которой есть два электрода – катод и анод. При нагреве катода происходит электронная эмиссия, электроны, вылетающие из катода, ускоряются электрическим полем и ударяются о поверхность анода. От обычной радиолампы (диода) рентгеновскую трубку отличает, в основном, более высокое ускоряющее напряжение (более 1 кВ).

Когда электрон вылетает из катода, электрическое поле заставляет его лететь по направлению к аноду, при этом скорость его непрерывно возрастает, электрон несет магнитное поле, напряженность которого растет с ростом скорости электрона. Достигая поверхности анода электрон резко тормозится, при этом возникает электромагнитный импульс с длинами волн в определенном интервале (тормозное излучение). Распределение интенсивности излучения по длинам волн зависит от материала анода рентгеновской трубки и приложенного напряжения, при этом со стороны коротких волн эта кривая начинается с некоторой пороговой минимальной длины волны, зависящей от приложенного напряжения. Совокупность лучей со всеми возможными длинами волн образует непрерывный спектр, и длина волны, соответствующая максимальной интенсивности, в 1,5 раза превышает минимальную длину волны.

 

При увеличении напряжения рентгеновский спектр резко меняется за счет взаимодействия атомов с высокоэнергетичными электронами и квантами первичных рентгеновских лучей. Атом содержит внутренние электронные оболочки (энергетические уровни), количество которых зависит от атомного номера (обозначаются буквами K, L, М и т.д.) Электроны и первичные рентгеновские лучи выбивают электроны из одних энергетических уровней на другие. Возникает метастабильное состояние и для перехода к стабильному состоянию необходим перескок электронов в обратном направлении. Этот скачок сопровождается выделением кванта энергии и возникновением рентгеновского излучения. В отличие от рентгеновских лучей с непрерывным спектром, у этого излучения очень узкий интервал длин волн и высокая интенсивность (характеристическое излучением) (см. рис.). Количество атомов, определяющих интенсивность характеристического излучения, очень велико, например, для рентгеновской трубки с медным анодом при напряжении 1 кВ токе 15 мА за 1 с характеристическое излучение дают 1014–1015 атомов. Эта величина вычисляется как отношение общей мощности рентгеновского излучения к энергии кванта рентгеновского излучения из К-оболочки (К-серия рентгеновского характеристического излучения). Общая мощность рентгеновского излучения при этом составляет всего 0,1% от потребляемой мощности, остальная часть теряется, в основном, за счет перехода в тепло.

Приемниками рентгеновского излучения являются электронно-оптические преобразователи с телевизионными трактами, кино- и флюорографические камеры. В схемах рентгенодиагностических аппаратов первого класса предусмотрены электронные устройства защиты трубок от перегрузок и синхронизированное реле времени.

Первой задачей радиационной безопасности является разработка критериев:

а) для оценки ионизирующего излучения как вредного фактора воздействия на отдельных людей, популяцию в целом и объекты окружающей среды;

б) способов оценки и прогнозирования радиационной обстановки, а также путей приведения ее в соответствие с выработанными критериями безопасности на основе создания комплекса технических, медико-санитарных и административно-организационных мероприятий, направленных на обеспечение безопасности в условиях применения атомной энергии в сфере человеческой деятельности.

Радиационная безопасность, кроме перечисленных выше задач, решает еще две функциональные задачи:

1) Снижение уровня облучения персонала и населения ниже (в крайнем случае, до) регламентируемого предела на основе следующих мероприятий: технических (создание защитных ограждений, автоматизация технологического процесса, очистка выбросов от радиоактивных веществ), медико-санитарных (обеспечение персонала средствами индивидуальной защиты-СИЗ, снабжение местных штабов ГО средствами защиты населения), организационных (создание специального графика работы в условиях пере облучения).

2)Создание эффективных систем радиационного контроля, позволяющих оперативно регистрировать изменения в радиационной обстановке.

 

 

2.

Рентгеноскопия - метод рентгенологического исследования, при котором изображение объекта получают на светящемся (флюоресцентном) экране.




Дата добавления: 2015-02-16; просмотров: 96 | Поможем написать вашу работу | Нарушение авторских прав




lektsii.net - Лекции.Нет - 2014-2025 год. (0.008 сек.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав