Студопедия
Главная страница | Контакты | Случайная страница

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатика
ИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханика
ОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторика
СоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансы
ХимияЧерчениеЭкологияЭкономикаЭлектроника

Метод Гаусса решения систем линейных уравнений.

Читайте также:
  1. A) Метод обучения.
  2. A) определение спроса на товар, оценка издержек производства, выбор метода ценообразования, установление окончательной цены
  3. A. метод абсорбции
  4. C) Методы исследования
  5. C.) К специфическим задачам, которые используются в ходе реализации частично-поисковых методов на уроке технологии, относятся
  6. D)практических методов.
  7. DSM — система классификации Американской психиатрической ассоциации
  8. EIS и DSS системы.
  9. ERP имеет выходы во внешнюю среду и предназначена для решения задач комплексного управления предприятием.
  10. ERP-система

 

Известный немецкий математик Иоганн Карл Фридрих Гаусс еще при жизни получил признание величайшего математика всех времен, гения и даже прозвище «короля математики». А всё гениальное, как известно – просто! Кстати, портрет Гаусса красовался на купюре в 10 дойчмарок (до введения евро), и до сих пор Гаусс загадочно улыбается немцам с обычных почтовых марок.

Метод Гаусса прост тем, что для его освоения достаточно знаний пятиклассника.Необходимо уметь складывать и умножать!

Сначала немного систематизируем знания о системах линейных уравнений. Система линейных уравнений может:

1) Иметь единственное решение.

2) Иметь бесконечно много решений.

3) Не иметь решений (быть несовместной).

Метод Гаусса – наиболее мощный и универсальный инструмент для нахождения решения любой системы линейных уравнений. Как мы помним, правило Крамера и матричный метод непригодны в тех случаях, когда система имеет бесконечно много решений или несовместна. А метод последовательного исключения неизвестных в любом случае приведет нас к ответу!

 

Пример 1

Решить систему методом Гаусса:

На первом этапе нужно записать расширенную матрицу системы:

Матрица системы – это матрица, составленная только из коэффициентов при неизвестных, в данном примере матрица системы: .

Расширенная матрица системы – это та же матрица системы плюс столбец свободных членов, в данном случае: .

После того, как расширенная матрица система записана, с ней необходимо выполнить некоторые действия, которые также называются элементарными преобразованиями.

 

Существуют следующие элементарные преобразования:

1) Строки матрицы можно переставлять местами. Например, в рассматриваемой матрице можно безболезненно переставить первую и вторую строки:

2) Если в матрице есть (или появились) пропорциональные (как частный случай – одинаковые) строки, то следует удалить из матрицы все эти строки кроме одной. Например:

Если в матрице в ходе преобразований появилась нулевая строка, то ее также следует удалить.

3) Строку матрицы можно умножить (разделить) на любое число, отличное от нуля. Например:

Здесь целесообразно первую строку разделить на –3, а вторую строку – умножить на 2. Данное действие очень полезно, поскольку упрощает дальнейшие преобразования матрицы.

4) К строке матрицы можно прибавить другую строку, умноженную на число, отличное от нуля. Рассмотрим нашу матрицу из практического примера. Ко второй строке прибавляем первую строку умноженную на –2:




Дата добавления: 2015-04-11; просмотров: 77 | Поможем написать вашу работу | Нарушение авторских прав

<== 1 ==> | 2 |


lektsii.net - Лекции.Нет - 2014-2025 год. (0.005 сек.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав