Студопедия  
Главная страница | Контакты | Случайная страница

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатика
ИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханика
ОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторика
СоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансы
ХимияЧерчениеЭкологияЭкономикаЭлектроника

Свойства неопределенного интеграла.

Читайте также:
  1. Автономные системы и свойства их решений.
  2. Активные свойства мембраны
  3. БЕСКОНЕЧНО МАЛЫЕ ФУНКЦИИ И ИХ ОСНОВНЫЕ СВОЙСТВА
  4. Бесконечно малые функции и их свойства.
  5. БОЕВЫЕ СВОЙСТВА СТРЕЛКОВОГО ОРУЖИЯ
  6. Вектор.Свойства.
  7. Взаимное влияние химических групп на свойства молекул
  8. Влияние рассеянного, солнечного и пониженного естественного освещения на пластические свойства формы
  9. Внешний вид, телесный состав и свойства падших духов.
  10. Волновые свойства микрочастиц. Дифракция электронов

 

Свойства неопределенного интеграла можно условно разделить на две группы. В первую группу собраны свойства, вытекающие из того, что интегрирование – операция, обратная дифференцированию. Во вторую группу собраны свойства линейности. Эти свойства вытекают из того, что интегрирование, как и дифференцирование – линейная операция и определяют линейную операцию.

Первая группа свойств.

1) .

2)

3)

4) .

Докажем первое свойство.

Так как

Здесь - первообразная для .

Докажем второе свойство.

Обозначим Тогда , а по первому свойству. Поэтому функции являются первообразными для функции . Следовательно, по теоремам о первообразных, они различаются на константу, т.е. или

Третье свойство следует из первого:

Четвертое свойство следует из второго, если вспомнить, что с дифференциалом первого порядка можно обращаться как с алгебраическим выражением (свойство инвариантности формы записи первого дифференциала).

Поэтому надо доказать два первых свойства.

Вторая группа свойств.

1) свойство суперпозиции

2) свойство однородности .

Доказательства того и другого свойств проводятся аналогично. Дифференцируем (по свойствам первой группы) левую и правую часть равенства, приходим к тождеству. Затем из теорем о первообразных заключаем, что левая и правая часть равенства, как первообразные одной и той же функции, различаются на константу. Эта константа может быть формально включена в неопределенный интеграл в левой или правой части равенства.

 

Для того, чтобы вычислить интеграл от функции, проще всего «угадать» первообразную для этой функции по таблице для производных, переписав эту таблицу в обратном порядке. Запишем интегралы для основных элементарных функций.

1) . Эти формулы лучше запомнить, они очень часто встречаются.

2)

3)

4)

Справедливость этих формул легко проверить, дифференцируя правую часть соотношения и получая подинтегральную функцию.

Лекция 2. Методы интегрирования и таблица интегралов.

Метод подведения под дифференциал.

Пусть известен интеграл ( - первообразная для функции ). Тогда

Главное здесь – «догадаться», как представить в виде .

Доказательство. по теореме о сложной функции. Следовательно, функция и являются первообразными для функции и, по теоремам о первообразных, различаются на константу.

 

Этот метод применяется часто. Например, , .

 

 

Метод замены переменной.

 

Это – универсальный метод, метод подведения под дифференциал является частным случаем метода замены переменной.

 

Теорема. Пусть функция непрерывно дифференцируема в некоторой области и имеет непрерывно дифференцируемую обратную функцию . Тогда где .

Доказательство. Дифференцируя обе части, используя теоремы о производной сложной функции и инвариантность формы записи первого дифференциала, получим тождество дифференциалов.

, где . Из него следует равенство интегралов в левой и правой частях.

Заметим, что требования к обратной функции нужны, чтобы суметь возвратиться обратно, от переменной к переменной .

 

Для вычисления интегралов вида , если вместо него удобно вычислять интеграл , пользуются методом интегрирования по частям.

 

= - ,

если интегралы в обеих частях соотношения существуют.

Докажем справедливость этой формулы. Дифференцируя произведение функций, получим или

.

Интегралы левой и правой частей существуют().

Интегрируя, получим нужное соотношение.

 

Примеры.

.

Вычислим интегралы , .

,

.

Теперь, подставляя второй интеграл в первый, получим

.

Аналогично, подставляя первый интеграл во второй, получим

.

Пополним таблицу интегралов, применяя методы интегрирования (в первой лекции получены четыре интеграла).

5.

6.

7.

8.

Здесь сделана замена переменной, подстановка - одна из подстановок Эйлера,

, , .

 

9.

()

.

 

.

Перенося искомый интеграл из правой части в левую часть, получим

 

10.

11.

12.

13. - вывести самостоятельно.

Эти соотношения представляют собой таблицу основных интегралов.




Дата добавления: 2015-09-10; просмотров: 31 | Поможем написать вашу работу | Нарушение авторских прав

Интегрирование элементарных рациональных дробей четырех типов. | Интегрирование рациональных функций от тригонометрических функций. | Интегрирование иррациональных функций. | Лекция 5. Определенный интеграл. | Свойства определенного интеграла. | Интеграл с переменным верхним пределом. | Формула Ньютона – Лейбница. | Методы вычисления определенного интеграла. | Несобственные интегралы от непрерывной функции по бесконечному промежутку (первого рода). | Несобственные интегралы от разрывной функции по конечному промежутку (второго рода). |


lektsii.net - Лекции.Нет - 2014-2024 год. (0.012 сек.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав