Студопедия
Главная страница | Контакты | Случайная страница

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатика
ИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханика
ОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторика
СоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансы
ХимияЧерчениеЭкологияЭкономикаЭлектроника

Определение производной функции через предел

Читайте также:
  1. A) Схватив окно за заголовок левой кнопкой мыши или через системное меню
  2. B.1 Арифметические функции
  3. B.2 Тригонометрические функции
  4. Cудeбныe функции князя и вeчe
  5. D) Область на дорожке диске, определяемая идентификационными метками и номером.
  6. I Раздел. Определение провозной способности судна.
  7. I) Биноминальное распределение
  8. I. Дайте определение понятиям
  9. I. Дифференциал функции.
  10. I. Определение эпидемического процесса и методологическое обоснование разделов учения об эпидемическом процессе.

Пусть в некоторой окрестности точки определена функция Производной функции в точке называется предел, если он существует,

Общепринятые обозначения производной функции в точке .

Заметим, что последнее обычно обозначает производную по времени дифференцируемость

Производная функции в точке , будучи пределом, может не существовать или существовать и быть конечной или бесконечной. Функция является дифференцируемой в точке тогда и только тогда, когда её производная в этой точке существует и конечна:

Для дифференцируемой в функции в

окрестности справедливо представление

при

· Назовём приращением аргумента функции, а или приращением значения функции в точке Тогда

· Пусть функция имеет конечную производную в каждой точке Тогда определена произво́дная фу́нкция

· Функция, имеющая производную в точке, непрерывна в ней. Обратное не всегда верно.

· Если производная функция сама является непрерывной, то функцию называют непреры́вно дифференци́руемой и пишут:

 

Таблица производных. Доказательство формул.




Дата добавления: 2015-01-12; просмотров: 84 | Поможем написать вашу работу | Нарушение авторских прав




lektsii.net - Лекции.Нет - 2014-2025 год. (0.007 сек.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав