Студопедия
Главная страница | Контакты | Случайная страница

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатика
ИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханика
ОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторика
СоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансы
ХимияЧерчениеЭкологияЭкономикаЭлектроника

Поток вектора магн.индукции и его знак. Магн.поток через произвольную поверхность. Теорема Гаусса для мп. Поток вектора В сквозь соленоид.

Читайте также:
  1. C. вплив на поведінку суб'єктів економіки через формування загальноекономічного середовища; Верно
  2. E) Через 33 года.
  3. OТРЫВ ПОГРАНИЧНОГО СЛОЯ ПРИ ОБТЕКАНИИ ТВЕРДЫХ ПОВЕРХНОСТЕЙ ГАЗОДИНАМИЧЕСКИМ ПОТОКОМ
  4. PR через рассылку приглашений на мероприятия
  5. А)Определители 2-го,3-го и п-го порядков (определения и из св-ва). б)Теорема Лапласа о разложении определителя по элементам строки или столбца.
  6. А-излучение - это поток тяжелых положительно заряженных
  7. Альтернативные правила принятия коллективных решений. Теорема Эрроу о невозможности.
  8. Анализ кредитоспособности на основе изучения денежных потоков
  9. Билет 4. Теорема Гаусса для электростатики (в интегральной и дифференциальной форме).
  10. Бифуркация (лат. bis-дважды, furca- виды) -разделение, раздвоение, разветвление чего-либо на два потока, на два направления. Не на три, на четыре, ..., а именно на два!!

Потоком вектора магнитной индукции (магнитным потоком) через площадку d S называется скалярная физическая величи­на, равная

B= B d S =Bn dS, где Bn cosa — проекция вектора В на направление нормали к площадке dS (a — угол между векторами n и В), d S =dS n — вектор, модуль которого ра­вен dS, а направление совпадает с направ­лением нормали n к площадке. Поток век­тора В может быть как положительным, так и отрицательным в зависимости от знака cosa (определяется выбором поло­жительного направления нормали n). Поток вектора магнитной индук­ции ФB через произвольную поверхность S равен

Для однородного поля и плоской по­верхности, расположенной перпендикуляр­но вектору В, B n= B =const и

ФВ=ВS.

Из этой формулы определяется единица магнитного потока вебер (Вб): 1 Вб — магнитный поток, проходящий через плоскую поверхность площадью 1 м2, рас­положенную перпендикулярно однородно­му магнитному полю, индукция которого равна 1 Тл (1 Вб=1 Тл•м2).

Теорема Гаусса для поля В: поток век­тора магнитной индукции через любую замкнутую поверхность равен нулю:

Эта теорема отражает факт отсутствия магнитных зарядов, вследствие чего линии магнитной индукции не имеют ни начала, ни конца и являются замкнутыми. Итак, для потоков векторов В и Е сквозь замкнутую поверхность в вихревом и потенциальном полях получаются раз­личные выражения.

В качестве примера рассчитаем поток вектора В через соленоид. Магнитная ин­дукция однородного поля внутри соленои­да с сердечником с магнитной проницае­мостью равна В=m0m,NI/l. Магнитный поток через один виток со­леноида площадью S равен Ф1=ВS, а полный магнитный поток, сцепленный со всеми витками соленоида и называемый потокосцеплением,

29. Работа по перемещению проводника с током. Работа по перемещению контура с током.

Если проводник не закреплен, то под действием силы Ампера он будет в магнитном поле переме­щаться. Следовательно, магнитное поле совершает работу по перемещению про­водника с током.

Для определения этой работы рассмотрим

проводник длиной l с током I (он может свободно перемещаться), помещен­ный в однородное внешнее магнитное по­ле, перпендикулярное плоскости контура. При указанных на рис. 177 направлениях тока и поля сила, направление которой определяется по правилу левой руки, а значение — по закону Ампера равна F=IBl.

Под действием этой силы проводник пере­местится параллельно самому себе на от­резок Ах из положения 1 в положение 2. Работа, совершаемая магнитным полем, равна dA=Fdx=IBldx =IB dS= I dФ,

так как l dx=dS— площадь, пересекае­мая проводником при его перемещении в магнитном поле, В dS=dФ — поток век­тора магнитной индукции, пронизываю­щий эту площадь. Таким образом,

d A = I dФ, т. е. работа по перемещению проводника с током в магнитном поле равна произве­дению силы тока на магнитный поток, пересеченный движущимся проводником. Полученная формула справедлива и для произвольного направления вектора В.

Вычислим работу по перемещению за­мкнутого контура с постоянным током I в магнитном поле. Предположим, что кон­тур М перемещается в плоскости чертежа и в результате бесконечно малого переме­щения займет положение М'. На­правление тока в контуре (по часовой стрелке) и магнитного поля (перпендику­лярно плоскости чертежа — за чертеж) указано на рисунке. Контур М мысленно разобьем на два соединенных своими концами

проводника: ABC и CDA.

Работа dA, совершаемая силами Ам­пера при рассматриваемом перемещении контура в магнитном поле, равна алгебра­ической сумме работ по перемещению проводников ЛВС (dA 1 ) и СDA (dА 2 ), т. е. dA=dA1+dA2. Силы, приложенные к участку CDA контура, образуют с направлением пере­мещения острые углы, поэтому совершае­мая ими работа dA2>0. эта работа равна произведению силы то­ка I в контуре на пересеченный проводни­ком CDA магнитный поток. Провод­ник CDA пересекает при своем движении поток dФ0 сквозь поверхность, выполнен­ную в цвете, и поток dФ2, пронизывающий контур в его конечном положении. Сле­довательно, d A 2= I (dФ0+dФ2). Силы, действующие на участок ЛВС контура, образуют с направлением пе­ремещения тупые углы, поэтому совер­шаемая ими работа dA 1<0. Провод­ник ЛВС пересекает при своем движении поток dФ0 сквозь поверхность, выполнен­ную в цвете, и поток dФ1, пронизывающий контур в начальном положении. Следова­тельно, d A 1= I (dФ0+dФ1).

Подставляя, получим выражение для эле­ментарной работы: d A = I (dФ2 -dФ1), где dФ2-dФ1=dФ'— изменение магнит­ного потока через площадь, ограниченную контуром с током. Таким образом, d A = I dФ'

Проинтегрировав выражение, оп­ределим работу, совершаемую силами Ам­пера, при конечном произвольном переме­щении контура в магнитном поле:

A = I DФ, т. е. работа по перемещению замкнутого контура с током в магнитном поле равна произведению силы тока в контуре на из­менение магнитного потока, сцепленного

с контуром.




Дата добавления: 2015-02-16; просмотров: 335 | Поможем написать вашу работу | Нарушение авторских прав




lektsii.net - Лекции.Нет - 2014-2025 год. (0.01 сек.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав