Читайте также:
|
|
Потоком вектора магнитной индукции (магнитным потоком) через площадку d S называется скалярная физическая величина, равная
dФB= B d S =Bn dS, где Bn=В cosa — проекция вектора В на направление нормали к площадке dS (a — угол между векторами n и В), d S =dS n — вектор, модуль которого равен dS, а направление совпадает с направлением нормали n к площадке. Поток вектора В может быть как положительным, так и отрицательным в зависимости от знака cosa (определяется выбором положительного направления нормали n). Поток вектора магнитной индукции ФB через произвольную поверхность S равен
Для однородного поля и плоской поверхности, расположенной перпендикулярно вектору В, B n= B =const и
ФВ=ВS.
Из этой формулы определяется единица магнитного потока вебер (Вб): 1 Вб — магнитный поток, проходящий через плоскую поверхность площадью 1 м2, расположенную перпендикулярно однородному магнитному полю, индукция которого равна 1 Тл (1 Вб=1 Тл•м2).
Теорема Гаусса для поля В: поток вектора магнитной индукции через любую замкнутую поверхность равен нулю:
Эта теорема отражает факт отсутствия магнитных зарядов, вследствие чего линии магнитной индукции не имеют ни начала, ни конца и являются замкнутыми. Итак, для потоков векторов В и Е сквозь замкнутую поверхность в вихревом и потенциальном полях получаются различные выражения.
В качестве примера рассчитаем поток вектора В через соленоид. Магнитная индукция однородного поля внутри соленоида с сердечником с магнитной проницаемостью равна В=m0m,NI/l. Магнитный поток через один виток соленоида площадью S равен Ф1=ВS, а полный магнитный поток, сцепленный со всеми витками соленоида и называемый потокосцеплением,
29. Работа по перемещению проводника с током. Работа по перемещению контура с током.
Если проводник не закреплен, то под действием силы Ампера он будет в магнитном поле перемещаться. Следовательно, магнитное поле совершает работу по перемещению проводника с током.
Для определения этой работы рассмотрим
проводник длиной l с током I (он может свободно перемещаться), помещенный в однородное внешнее магнитное поле, перпендикулярное плоскости контура. При указанных на рис. 177 направлениях тока и поля сила, направление которой определяется по правилу левой руки, а значение — по закону Ампера равна F=IBl.
Под действием этой силы проводник переместится параллельно самому себе на отрезок Ах из положения 1 в положение 2. Работа, совершаемая магнитным полем, равна dA=Fdx=IBldx =IB dS= I dФ,
так как l dx=dS— площадь, пересекаемая проводником при его перемещении в магнитном поле, В dS=dФ — поток вектора магнитной индукции, пронизывающий эту площадь. Таким образом,
d A = I dФ, т. е. работа по перемещению проводника с током в магнитном поле равна произведению силы тока на магнитный поток, пересеченный движущимся проводником. Полученная формула справедлива и для произвольного направления вектора В.
Вычислим работу по перемещению замкнутого контура с постоянным током I в магнитном поле. Предположим, что контур М перемещается в плоскости чертежа и в результате бесконечно малого перемещения займет положение М'. Направление тока в контуре (по часовой стрелке) и магнитного поля (перпендикулярно плоскости чертежа — за чертеж) указано на рисунке. Контур М мысленно разобьем на два соединенных своими концами
проводника: ABC и CDA.
Работа dA, совершаемая силами Ампера при рассматриваемом перемещении контура в магнитном поле, равна алгебраической сумме работ по перемещению проводников ЛВС (dA 1 ) и СDA (dА 2 ), т. е. dA=dA1+dA2. Силы, приложенные к участку CDA контура, образуют с направлением перемещения острые углы, поэтому совершаемая ими работа dA2>0. эта работа равна произведению силы тока I в контуре на пересеченный проводником CDA магнитный поток. Проводник CDA пересекает при своем движении поток dФ0 сквозь поверхность, выполненную в цвете, и поток dФ2, пронизывающий контур в его конечном положении. Следовательно, d A 2= I (dФ0+dФ2). Силы, действующие на участок ЛВС контура, образуют с направлением перемещения тупые углы, поэтому совершаемая ими работа dA 1<0. Проводник ЛВС пересекает при своем движении поток dФ0 сквозь поверхность, выполненную в цвете, и поток dФ1, пронизывающий контур в начальном положении. Следовательно, d A 1= I (dФ0+dФ1).
Подставляя, получим выражение для элементарной работы: d A = I (dФ2 -dФ1), где dФ2-dФ1=dФ'— изменение магнитного потока через площадь, ограниченную контуром с током. Таким образом, d A = I dФ'
Проинтегрировав выражение, определим работу, совершаемую силами Ампера, при конечном произвольном перемещении контура в магнитном поле:
A = I DФ, т. е. работа по перемещению замкнутого контура с током в магнитном поле равна произведению силы тока в контуре на изменение магнитного потока, сцепленного
с контуром.
Дата добавления: 2015-02-16; просмотров: 335 | Поможем написать вашу работу | Нарушение авторских прав |