Студопедия
Главная страница | Контакты | Случайная страница

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатика
ИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханика
ОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторика
СоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансы
ХимияЧерчениеЭкологияЭкономикаЭлектроника

Математический анализ.

Читайте также:
  1. PEST-анализ. Метод анализа внешней среды
  2. Анализ внешней среды организации. SWOT-анализ.
  3. Анализ дебиторской и кредиторской задолженности, их сравнительный анализ.
  4. Анализ как важнейший этап изучения литературного произведения. Школьный и литературоведческий анализ. Требования к школьному анализу.
  5. Аналитические коэффициенты. Вертикальный и факторный анализ.
  6. Глава 1. Математический аппарат квантовой механики
  7. Контроль и регулирование, учет, анализ. Процесс контроля.
  8. Корреляционный анализ.
  9. Математический анализ

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

ФГБОУ ВПО «Калмыцкий государственный университет»

Факультет математики, физики и информационных технологий

 

УТВЕРЖДЕНА

Решением Ученого совета

Факультета МФИТ

Протокол от 24 сентября 2014 г. №

 

И.о. декана Сумьянова Е.В.

ПРОГРАММА

ИТОГОВОГО МЕЖДИСЦИПЛИНАРНОГО ГОСУДАРСТВЕННОГО ЭКЗАМЕНА

ПО СПЕЦИАЛЬНОСТИ 010101.65 «МАТЕМАТИКА» в 2015 ГОДУ

 

 

Алгебра. Линейная алгебра и геометрия

Комплексные числа. Алгебраическая и тригонометрическая формы записи комплексного числа. Операции над комплексными числами. Модуль и аргумент комплексного числа. Возведение в степень и извлечение корней из комплексных чисел.

Векторное пространство. Подпространство. Линейно зависимые и линейно независимые системы векторов. Базис и размерность. Координаты вектора и матрица перехода. Линейные отображения и матрицы, собственные числа и векторы, характеристический многочлен. Вещественное евклидовое пространство. Скалярное произведение векторов и его свойства. Неравенство Коши–Буняковского. Длина вектора и угол между векторами. Ортогональные и ортонормированные базисы. Процесс ортогонализации.

Операции над матрицами. Ранг матрицы. Обратимые матрицы. Определитель квадратной матрицы и его разложение по строке или столбцу.

Системы линейных алгебраических уравнений. Пространство решений однородной системы, его размерность и базис, общее решение. Критерий существования ненулевого решения однородной системы. Неоднородные системы, частное и общее решения.

Многочлены от одной переменной с комплексными коэффициентами. Операции над многочленами. Корень многочлена, простые и кратные корни. Теорема Безу. Основная теорема алгебры. Случай многочленов нечетных степеней с вещественными коэффициентами.

Вещественные квадратичные формы. Канонический вид. Определенные и неопределенные квадратичные формы. Закон инерции для вещественных квадратичных форм.

Вопросы к экзамену:

1. Критерий обратимости матрицы и формула для обратной матрицы.

2. Преобразование координат вектора при переходе от одного базиса к другому.

3. Критерий совместности системы линейных алгебраических уравнений (теорема Кронекера-Капелли).

4. Разложение многочленов с комплексными и вещественными коэффициентами. Формулы Виета.

5. Закон инерции вещественных квадратичных форм.

6. Собственные числа и собственные векторы матрицы и их свойства

7. Теорема Гамильтона – Кели.

Математический анализ.

Действительные числа. Аксиоматика множества действительных чисел. Последовательность в Rn, n≥1, ограниченные и неограниченные последовательности в Rn. Предел, частичный предел, предел последовательности в Rn. Их существование и свойства. Сходящиеся и расходящиеся последовательности в R1. Верхний, нижний предел последовательности в R1. Теорема о пределе монотонной последовательности. Способы вычисления пределов последовательности в R1 и в Rn , n≥2. Примеры вычисления пределов последовательности .

Функция f: Rn →Y( R). Понятие инъективной, сюръективной, биективной функции. Определение предела функции в точке на языке «ε-N» и языке последовательностей (теорема Гейне). Определение непрерывной в точке функции на языке «ε-N» и языке пределов. Локальные свойства функции, имеющих в точке конечный предел: единственность предела, локальная ограниченность. Определение непрерывной на множестве функций. Понятие монотонной функции. Теорема о пределе монотонной на (a,b) функции. Понятие компакта в Rn . Свойства непрерывных на компакте функции: I и II теоремы Вейерштрасса, теорема Кантора. Дифференцируемость в точке ф.м.п. f: Rn → R, ее производная и дифференциал в точке. Связь между дифференцируемыми и непрерывными в точке функциями. Свойства дифференцируемых на промежутке функций: теоремы Ферма, Ролля, Коши, Лагранжа о конечном приращении. Понятие монотонной функции. Достаточные условия монотонности функции на промежутке. Правило Лопиталя, раскрытие неопределенности при вычислении предела функции. Дифференцируемость в точке ф.м.п. f: Rn → R и отображения f: Rn → Rn. Частная производная и дифференциал в точке функций многих переменных. Необходимые и достаточные условия дифференцируемости ф.м.п. в точке. Понятие непрерывной дифференцируемости ф.м.п. и отображения в точке. Теорема о дифференцируемости суперпозиции. Теорема о совпадении смешанных производных.

Определение неопределенного интеграла.Определение интеграла Римана (определенного интеграла) от функции на отрезке П =[a,b] в R1 и параллелепипеде П в Rn. Необходимое условие интегрируемости функции по Риману. Суммы Дарбу и критерии Дарбу интегрируемости функции на П. Свойство аддитивности интеграла Римана с переменным верхним пределом. Его свойства. Множество, измеримое по Жордану в Rn, его мера. Жордановы нуль-множества и их свойства. Определение функции, интегрируемой по Риману на Жордановом множестве. Формула Ньютона–Лейбница для интеграла Римана по отрезку. Метод сведения интеграла Римана по параллелепипеду П в Rn, n-кратного интеграла к повторным, теорема Фубини.

Определение несобственного интеграла с единственной особой точкой, его сходимость. Признаки сходимости несобственных интегралов от неотрицательных функций. Абсолютная и условная сходимость несобственных интегралов с одной особой точкой. Определение сходимости несобственного интеграла с конечным числом особых точек, корректность определения, его абсолютная и условная сходимость. Определение несобственного интеграла, зависящего от параметра. Поточечная и равномерная сходимость несобственного интеграла, зависящего от параметра на множестве. Признак Вейерштрасса равномерной сходимости. Примеры Г-функций и В-функций Эйлера.

Числовой ряд. Его сходимость (расходимость). Признаки сравнения Коши, Даламбера, сходимости рядов с неотрицательным общим членом. Определение абсолютно и условно сходящихся рядов. Свойства сходящихся рядов: теорема об арифметических операциях, переместительное свойство, сочетательное свойств. Знакопеременные ряды, признак Лейбница.

Понятие функционального ряда {fn(x)}, fn: R1 → R1. Поточечная и равномерная сходимость функционального ряда на множестве. Признак Вейерштрасса равномерной сходимости. Понятие ряда Фурье от функции, определенной на [-π;π] по классической тригонометрической системе. Коэффициенты Фурье. Разложение функций в ряды Фурье только по sin или cos кратных дуг.

Вопросы к экзамену:

  1. Теорема об ограниченности непрерывной на отрезке вещественной функции одной переменной
  2. Теорема о необходимом и достаточном условии дифференцируемости вещественной функции от одной переменной
  3. Теорема о непрерывности и дифференцируемости интеграла с переменным верхним пределом.
  4. Теорема о сходимости абсолютно сходящего несобственного интеграла.
  5. Теорема Лейбница о сходимости знакочередующегося числового ряда.
  6. Формула Грина как основная формула анализа.
  7. Признак Вейерштрасса равномерной сходимости функционального ряда.
  1. ТФКП.

Дифференцируемость функции комплексного переменного. Аналитические функции. Интегрирование ф.к.п. Сведение интеграла к криволинейным интегралам 1,2 рода. Интегральная теорема Коши. Интегральная формула Коши для простого и сложного контуров. Интеграл типа Коши. Теорема Морера. Принцип максимальности модуля. Лемма Шварца. Теорема единственности.

Степенной ряд, круг и радиус сходимости. Теорема Абеля. Примеры разложения в степенной ряд функций: еz, sin z, cos z, ln(1+z), (1+z)μ, sh z, chz.

Понятие изолированной особой точки однозначного характера для аналитической функции (и.о.т.о.х). Критерий устранимой и.о.т.о.х, полюса, существенно особой точки. Теорема Сохоцкого. Ряд Лорана функции, теоремы о вычетах. Применение теории вычетов к вычислению определенных интегралов типа: , , .

Дробно-линейная функция (д.л.ф.), как пример функции, отображающей конформно расширенную комплексную плоскость на себя. Основные свойства д.л.ф. Элементарные функции 1/2 (z+1/z). Примеры конформного отображения областей элементарными функциями. Многозначные функции z1/n, Ln z, Arcsin z, Arctg z. Понятие об аналитическом продолжении.

Вопросы к экзамену:

1. Дробно-линейная функция и конформные отображения.




Дата добавления: 2015-04-11; просмотров: 84 | Поможем написать вашу работу | Нарушение авторских прав

<== 1 ==> | 2 | 3 |


lektsii.net - Лекции.Нет - 2014-2025 год. (0.014 сек.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав