Студопедия
Главная страница | Контакты | Случайная страница

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатика
ИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханика
ОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторика
СоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансы
ХимияЧерчениеЭкологияЭкономикаЭлектроника

Магнитное поле бесконечно длинного соленоида

Читайте также:
  1. БЕСКОНЕЧНО МАЛЫЕ ФУНКЦИИ И ИХ ОСНОВНЫЕ СВОЙСТВА
  2. Бесконечно малые функции и их свойства.
  3. Бесконечное разнообразие текстов
  4. Бесконечное сострадание прольется на нас, если мы упадем.
  5. Вам может показаться, что вы одиноки в этом мире, однако вы бесконечно связаны со всеми формами реальности за границами вашего восприятия.
  6. ВЕЧНОСТЬ И БЕСКОНЕЧНОСТЬ ИСТОТНОГО ЯЗЫКА.
  7. Восьмая динамика. Бесконечность, Творец
  8. Где S — площадь сечения соленоида или площадь сечения одного витка, а N — число витков.
  9. Д) Бесконечное истолкование
  10. Индуктивность соленоида

Соленоид - это проволочная катушка цилиндрической формы. Его можно представить себе как множество сложенных в стопку круговых витков с током. Силовые линии магнитного поля, создаваемого электри­ческим током в соленоиде, показаны на рис. 6.6. Как видно из этого рисунка, внутри соленоида силовые линии почти прямые. Чем длин­нее соленоид, т.е. чем больше его длина по сравнению с его радиусом, тем меньше кривизна силовых линий внутри соленоида. В таком случае вектор В магнитной индукции поля внутри соленоида будет направлен параллельно его оси. Причем так, что его направление будет связано с направлением тока в соленоиде правилом правого винта. Направим ось х вдоль оси соленоида. При этом проекция вектора магнитной индукции на ось х будет равна его модулю, а все другие его проекции будут равны нулю:

Bx =B, By =Bz =0.

Подставим эти проекции вектора В в уравнение (6.12). Получим

¶B/¶x = 0

Из этого равенства вытекает, что внутри соленоида вектор магнитной индукции не только сохраняет свое направление, но его модуль здесь всюду одинаков. Таким образом, приходим к выводу, что внутри длин­ного соленоида магнитное поле является однородным.

.

Рис. 6.6. Магнитное поле соленоида

Найдем модуль вектора магнитной индукции поля внутри соленоида при помощи теоремы (6.8) о циркуляции этого вектора. В качестве кон­тура С, по которому будем вычислять циркуляцию вектора магнитной индукции, выберем ломанную линию, изображенную пунктиром на рис. 6.6. Отрезок этой линии длиной l находится внутри соленоида и совпа­дает с одной из силовых линий магнитного поля. Две перпендикулярные этому отрезку прямые начинаются на его концах и уходят в бесконеч­ность. Во всех точках этих прямых вектор магнитной индукции или перпендикулярен им (внутри соленоида), или равен нулю (вне соленои­да). Поэтому скалярное произведение Вdl в этих точках равно нулю. Таким образом, циркуляция магнитной индукции по рассматриваемому контуру С будет равна интегралу по отрезку силовой линии длиной l. С учетом того, что модуль вектора магнитной индукции есть постоянная величина будем иметь

= =B =B l

 

Пусть число витков соленоида, охватываемых контуром С, равно N. При этом сумма токов, охватываемых контуром, будет равна NI, где I - сила тока в одном витке соленоида. Теорема (6.8) приводит к равенству

Вl = μo NI,

из которого найдем магнитную индукцию поля в соленоиде:

В = μo nI

(6.14)

где n=N/l

n-число витков, приходящихся на единицу длины соленоида.




Дата добавления: 2015-09-11; просмотров: 124 | Поможем написать вашу работу | Нарушение авторских прав

Гипотеза о токе смещения | Гипотеза о существовании вихревого электрического поля | Гипотеза о существовании электромагнитного поля. | Сила Лоренца | Движение заряженной частицы в однородном и постоянном магнитном поле | Действие магнитного поля на проводник с током. Сила Ампера | Контур с током в магнитном поле | Исследование практических задач. Определение отношения заряда электрона к его массе | Закон Био - Савара - Лапласа | Магнитное поле кругового тока |


lektsii.net - Лекции.Нет - 2014-2025 год. (0.006 сек.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав