Читайте также:
|
|
В рядах динамики экономических процессов между уровнями, особенно близко расположенными, существует взаимосвязь. Ее удобно представить в виде корреляционной зависимости между рядами y1,y2,y3,…..yn h y1+h, y2+h,,…, yn+h. Временное смещение L называется сдвигом, а само явление взаимосвязи – автокорреляцией.
Автокорреляционная зависимость особенно существенна между последующими и предшествующими уровнями ряда динамики.
Различают два вида автокорреляции:
- автокорреляция в наблюдениях за одной или более переменными;
- автокорреляция ошибок или автокорреляция в отклонениях от тренда.
Наличие последней приводит к искажению величин средних квадратических ошибок коэффициентов регрессии, что затрудняет построение доверительных интервалов для коэффициентов регрессии, а так же проверку их значимости.
Автокорреляцию измеряют при помощи циклического коэффициента автокорреляции, который может рассчитываться не только между соседними уровнями, т.е. сдвинутыми на один период, но и между сдвинутыми на любое число единиц времени (L). Этот сдвиг, именуемый временным лагом, определяет и порядок коэффициентов автокорреляции: первого порядка (при L=1), второго порядка (при L=2) и т.д. Однако наибольший интерес для исследования представляет вычисление нециклического коэффициента (первого порядка), так как наиболее сильные искажения результатов анализа возникают при корреляции между исходными уровнями ряда и теми же уровнями, сдвинутыми на одну единицу времени.
Тогда формулу коэффициента автокорреляции можно записать следующим образом:
Если ряд динамики состоит из уровней, среднее значение которых равно нулю то формула имеет вид:
Для суждения о наличии или отсутствия автокорреляции в исследуемом ряду фактическое значение коэффициентов автокорреляции сопоставляется с табличным (критическим) для 5% - го или 1% - го уровня значимости.
Если фактическое значение коэффициента автокорреляции меньше табличного, то гипотеза об отсутствии автокорреляции в ряду может быть принята. Когда же фактическое значение больше табличного, можно сделать вывод о наличии автокорреляции в ряду динамики.
Дата добавления: 2015-01-12; просмотров: 103 | Поможем написать вашу работу | Нарушение авторских прав |