Читайте также:
|
|
Случайная величина называется дискретной, если в результате испытания она может принять значение из конечного либо счетного множества возможных числовых значений.
Случайные величины в дальнейшем будем обозначать большими буквами:
X, Y, Z
Вероятностное пространство дискретной случайной величины задается в виде:
n - конечное или бесконечное.
Пример:
Испытание - композиция n-независимых испытаний, в каждом из которых происходит событие A с вероятностью p, либо с вероятностью 1-p.
Вероятностное пространсте
В этом примере s-алгеброй является множество всех подмножеств пространства элементарных событий. Введенную нами случайную величину x по определению можно задать:
- верхняя строчка - это совокупность возможных числовых значений, которые может принимать случайная величина;
- нижняя строчка - вероятность наступления этих числовых значений.
Практически во всех задачах естествознания отсутствует промежуточный этап: испытание, W - пространство всех возмо исходов испытания, - числовая скалярная функция, элементы которой wÌW.
На самом деле структура:
- испытание;
- исход испытания;
- число на числовой оси.
23 билет
Система непрерывных случайных величин.
Случайная величина Х называется непрерывной, если ее функция распределения F(x) есть непрерывная, кусочно-дифференцируемая функция с непрерывной производной.
Так как для таких случайных величин функция F(x) нигде не имеет скачков, то вероятность любого отдельного значения непрерывной случайной величины равна нулю P { X = α }=0 для любого α. В качестве закона распределения, имеющего смысл только для непрерывных случайных величин существует понятие плотности распределения или плотности вероятности. Вероятность попадания непрерывной случайной величины X на участок от x до x +D x равна приращению функции распределения на этом участке:P{ x£X < x +D x }= F (x +D x) - F (x).
Билет
Дата добавления: 2015-01-30; просмотров: 80 | Поможем написать вашу работу | Нарушение авторских прав |