Студопедия
Главная страница | Контакты | Случайная страница

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатика
ИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханика
ОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторика
СоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансы
ХимияЧерчениеЭкологияЭкономикаЭлектроника

Движение точки задано, если известны координаты точки, как непрерывные, дважды дифференцируемые функции времени, т.е.

Читайте также:
  1. Callback-функции;
  2. dφ это приращение угла поворота, а dt это промежуток времени, за который приращение происходит
  3. I. Понятие, структура и функции религии. Социологические теории религии.
  4. N3 Функции философии
  5. VIII. Учет и контроль за движением медицинских отходов
  6. XXXII/Смута. Василий Шуйский. Движение Болотникова.
  7. А с точки зрения Мантра йоги мы-то с вами кто?
  8. Адаптационные изменения сердечно-сосудистой системы при физических нагрузках. Средства ЛФК, восстанавливающие нарушения функции сердца.
  9. Альтернативные точки зрения на предмет информатики (Р. Хемминг, Г. Саймон, Д. Кнут, М. Минский, Ст. Шапиро, А. Ершов)
  10. Анализ движение работников в организации

Векторный способ.

Будем рассматривать случай декартовой прямоугольной системы координат. Движение точки относительно рассматриваемой системы отсчета задано, если известен радиус-вектор этой точки как функция времени, т.е.

Векторный способ обычно применяется для теоретического изложения кинематики точки.

Координатный способ.

Движение точки можно изучать используя любую систему координат. Рассмотрим случай декартовой прямоугольной системы координат.

Движение точки задано, если известны координаты точки, как непрерывные, дважды дифференцируемые функции времени, т.е.

, , (1-2)

Уравнения движения есть также уравнения траектории точки в параметрической форме. Параметром является время t.

(1-3)

Уравнения траектории в координатной форме получаются из уравнений (1-2) исключением параметра t. Получаются уравнения двух поверхностей , . Пересечение этих поверхностей дает кривую в пространстве – траекторию точки.




Дата добавления: 2015-02-16; просмотров: 102 | Поможем написать вашу работу | Нарушение авторских прав




lektsii.net - Лекции.Нет - 2014-2025 год. (0.005 сек.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав