Читайте также:
|
|
1. f(x) = C, (где С – постоянная) непрерывна на R, т.к. при любом x.
2. f(x) = x, непрерывна на R, т.к. при
.
3. f(x) = , непрерывна на R как произведение непрерывных функций.
4. f(x) = , непрерывна на R, т.к. многочлен
есть сумма непрерывных функций.
5. f(x) = , где P и Q – многочлены степени n и m соответственно, непрерывна на R кроме тех x, при которых Q обращается в нуль, как частное непрерывных функций.
6. f(x) = sin(x), f(x) = cos(x)
Пусть – произвольная точка множества R. Тогда sinx-sin
. Так как
, а
, то
, откуда следует, что функция f(x) = sin(x) – непрерывна.
Аналогично рассуждая, можно доказать непрерывность косинуса. Из непрерывностей синуса и косинуса следуют непрерывности тангенса и котангенса, учитывая что (для тангенса) и
(для котангенса).
7. f(x) = arcsin(x), f(x) = arccos(x), f(x) = arctg(x), f(x) = arcctg(x), непрерывны на своей области определения. Это следует из теоремы об обратной функции, примененной не ко всей тригонометрической функции (к примеру, sin(x)), а к ее отрезку (для sin(x) это отрезок ).
8. , где r – рациональное. Представим r = m / n,
. Тогда
. Функция
непрерывна и строго возрастает на R. По п. 2
также непрерывна.
9. , a > 1, непрерывна на R. Пусть
– произвольная точка множества R,
=
. Докажем, что
. Пусть
- произвольная последовательность вещественных чисел такая, что
. В силу свойств вещественных чисел найдутся последовательности рациональных чисел
и
, удовлетворяющие при
условию:
<
, откуда
. Так как
и
, то
=1. Отсюда и
, ч.т.д.
10. Логарифмическая функция непрерывна, что следует из непрерывности показательной функции по теореме об обратной функции.
№11
Дата добавления: 2015-09-10; просмотров: 91 | Поможем написать вашу работу | Нарушение авторских прав |