Читайте также:
|
|
РТМ являются многопозиционными машинами, в которых основные и вспомогательные операции технологического цикла выполняются при непрерывном транспортном перемещении таблеток. В связи с этим в РТМ применяется до нескольких десятков комплектов пресс-инструмента, с помощью которых одновременно, но на разных фазах осуществляется процесс таблетирования.
Принцип работы РТМ показан на рис. 31 (схема отечественной 12-пуансонной машины РТМ-12). Проследим за движением одной из матриц (находящейся под воронкой).
Рис. 31. Схема процесса таблетирования на РТМ-12
(И.А. Муравьев, 1980)
1. Нижний пуансон (3) опустился в точно обусловленное положение. Верхний пуансон (2) в это время – ушёл в самое верхнее положение, поскольку матричное отверстие (7) подошло под воронку (1) (операция загрузки).
2. Как только матрица (с заполненным гнездом) прошла воронку вместе с вращением столешницы (4), начинается постепенное опускание верхнего пуансона. Достигнув противоположной стороны, он сразу же попадает под прессующий валик (5). Одновременно на нижний пуансон оказывает давление валик (6) (операция прессования).
3. После прохода между валиками верхний пуансон начинает подниматься. Нижний пуансон также несколько приподнимается и выталкивает таблетку из матрицы. С помощью ножа (скребка) таблетка сбрасывается со столешницы – операция выталкивания (выпрессовки) таблетки.
Такое движение последовательно совершают все пресс-инструменты (матрица и пара пуансонов). Для того чтобы обеспечить пуансонам должное движение, к их рукояткам (которые здесь называются ползунами), приделаны ролики, с помощью которых они ползут (катятся) по верхним и нижним копирам (направляющим). Схема движения представлена на рис. 32. Во время операции загрузки ролик верхнего ползуна с пуансоном находится на высшей точке верхнего копира (над воронкой). Далее он скользит вниз по наклонной копира, пуансон касается матричного отверстия, погружается в него и сдавливает материал. Давление нарастает и достигает максимума в тот момент, когда ролик ползуна окажется под давлением валика (операция прессования). После этого ролик с пуансоном начинает подниматься вверх по копиру и достигает максимума. В это время нижний ползун совершает следующие движения. В стадии загрузки его ролик подпирается валиком, регулирующим объем матричного отверстия. После этого нижний ползун движется по прямому копиру. В стадии прессования его ролик приподнимается давильным валиком, благодаря чему нижний пуансон со своей стороны оказывает давление на материал. Далее копир идет несколько вверх, в результате чего нижний пуансон выталкивает таблетку (операция выталкивания). После этого, вследствие опускания копира нижний пуансон также опускается вниз и все повторяется сначала.
РТМ могут иметь в роторе от 12 до 55 матриц (позиций). Помимо того, они могут быть однопоточными (с одной загрузочной воронкой) и двухпоточными (с двумя загрузочными воронками). В последнем случае весь производственный цикл заканчивается за пол-оборота ротора. В результате резко повышается производительность РТМ.
Такой высокопроизводительной машиной является, в частности, отечественная конструкция РТМ-41, которая является двухпоточной машиной, имеющей 41 гнездо (позицию). Производительность РТМ-41 при одногнездном пресс-инструменте достигает 204000 шт. в час. Диаметр таблетки до 16 мм, глубина наполнения 18 мм, усилие прессования 6 т/с.
Рис. 32. Схема движения пуансонов в многоматричной
ротационной машине (И.А. Муравьев, 1980)
1 – ползун; 2 – ролик; 3 – верхний копир; 4 – верхний пуансон;
5 – столешница; 6 – матрица; 7 – нижний пуансон;
8 – нижний ползун; 9, 11, 12, 15 – ролики;
10 – нижний копир; 13 – воронка; 14 – мешалки в воронке;
16 – нож для сбрасывания таблетки; 17 – лоток; 18 – таблетка
РТМ-41 (и ее вариация РТМ-2 MB) позволяют получать таблетки из сыпучих материалов, обладающих различными физическими и технологическими свойствами.
Еще более скоростной машиной является РТМ-55, рассчитанная на выпуск таблеток диаметром до 7 мм. Ее производительность может достигать 448000 шт. в час, скорость вращения ротора 17-68 об./мин.
Поскольку в РТМ давление двустороннее и нарастает (снимается) постепенно, таблетки получаются высокого качества. Эти машины работают равномерно, не пылят. В загрузочной воронке может быть установлена мешалка. Вращающийся ротор допускает установку приспособлений для опудривания матричного отверстия перед загрузкой, а также после нее (для опыливания поверхности заполненной матрицы). В некоторых конструкциях имеются щеточные обтирающие или очищающие приспособления, обеспечивающие чистоту пуансонов.
В мировой практике созданы высокопроизводительные таблеточные прессы, оснащенные приборами для автоматического контроля массы таблеток, давления прессования. Имеются модели машин, выпускающие в час более полумиллиона таблеток.
В таблеточных машинах используется объемный метод дозирования. Загрузочное устройство РТМ состоит из загрузочной воронки – бункера и питателя-дозатора, укрепленных неподвижно на станине машины. Бункер обеспечивает непрерывность потока таблетируемого материала. Для равномерной подачи плохо сыпучих материалов из бункера в питатель первые могут быть снабжены мешалками, шнеками, ворошителями. Питатель-дозатор предназначен для формирования, направления и дозированной подачи таблеточной смеси в зону прессования.
Конструкция питателя должна обеспечивать работу РТМ с высокой производительностью, точность и стабильность массы таблеток, таблетирование материалов с различными свойствами и характеристиками, заполнение матричных отверстий от минимальных до максимальных диаметров, соответствующих размерам таблеток согласно требованиям фармакопеи.
В отечественных РТМ используются питатели-дозаторы: лопастные 2- и 3-камерные и рамочный. Наиболее широко применяются 2-камерные питатели. Высокопроизводительные автоматы, имеющие производительность 300 тыс. таблеток в час и более, оснащены 3-камерными питателями-дозаторами, обладающими наилучшими характеристиками по заполнению матриц РТМ. Стабильность массы таблеток при работе 3-камерного питателя-дозатора объясняется его конструкцией (рис. 33), в которой по сравнению с 2-камерными имеется верхняя камера с лопастями загрузочного ворошителя (1), расположенная над двумя нижними камерами с заполняющим (2) и дозирующим (3) ворошителями. Она служит для передачи таблеточной смеси из бункера в камеру заполняющего ворошителя (2) и регулировки его поступления в питатель в зависимости от изменения расхода материала.
Лопастные дозирующие устройства, к которым относятся 2- и 3-камерные питатели, несмотря на преимущества, имеют большую металлоемкость, оснащены индивидуальным приводом, что ведет к повышенному расходу энергозатрат, недостаточно удобны в эксплуатации при смене лекарственных веществ.
Рис. 33. Трехкамерный питатель-дозатор
(Л.А. Иванова, 1991)
1 – загрузочный ворошитель;
2 – заполняющий ворошитель;
3 – дозирующий ворошитель
Наиболее простым и надежным в эксплуатации является рамочный питатель, но его применение эффективно лишь при прессовании препаратов хорошей и средней сыпучести при скорости вращения ротора до 30 м/мин. В настоящее время создана конструкция рамочного питателя с вибрационной сеткой. Величина сетки выбирается в зависимости от формы и размера гранул, сыпучести таблеточной смеси. Изменяя амплитуду и частоту колебаний вибросетки, можно добиться высокой точности массы таблетки на всех режимах работы РТМ при сохранении всех положительных эксплуатационных характеристик рамочного питателя.
Общий вид РТМ-41 представлен на рис. 34, а процесс таблетирования можно рассмотреть на циклограмме – развертке машины (рис. 35).
Из бункера (1) порошок самотеком поступает в питатель-дозатор (3), неподвижно укрепленный на станине машины. Заполняющий ворошитель лопастями (4) осуществляет подачу порошка в матрицу (6), при этом пуансоны (8), укрепленные в толкателях (9), опускаются по неподвижному копиру (10) и регулируемому копиру (15) на полную глубину заполнения матриц. При дальнейшем вращении ротора толкатель следует по горизонтальному участку копира к дозирующему механизму, который состоит из копира (16) и шарнирно связанного с ним регулируемого дозатора (17). Копир-дозатор перемещает толкатель с пуансоном вверх, поднимая порошок в матрице на высоту, соответствующую по объему заданной массе таблетки. В это время лопасти (20) дозирующего ворошителя срезают излишек дозы и передают ее обратно в зону действия заполняющего ворошителя. Поскольку лопасти находятся на 1,0–1,5 мм выше дна корпуса питателя, то в дозировании участвует и кромка корпуса (21) питателя, отстоящая от зеркала стола на 0,1 мм. Окончательно отсекает дозу нож (22) с фторопластовой пластиной, плотно прижатой к столу.
Рис. 34. Общий вид РТМ-41 (Л.А. Иванова, 1991)
Рис. 35. Принцип работы РТМ-41 (Л.А. Иванова, 1991)
Во время дальнейшего переноса дозы нижний толкатель попадает на горизонтальный копир (18), верхний – проходит под копиром-отбойником (23), опускающим верхние пуансоны до захода их в матрицу. Ролики (19) осуществляют предварительное прессование (подпрессовку), а ролики давления (11) – собственно прессование. При этом на РТМ порошок выдерживается под давлением за счет наличия плоского торца на головке толкателя, смещения, на 3-4 мм осей верхнего и нижнего роликов давления, введения специальных копиров (2), размещенных на уровне ролика давления в момент прессования. Выталкивание таблетки из плоскости матрицы на поверхность зеркала стола осуществляется механизмом выталкивания, состоящим из трех элементов. Ролик выталкивания (12) отрывает таблетку от стенки матрицы. Копир выталкивания (13) доводит таблетку до верхнего уровня, а выталкиватель (14) регулируется таким образом, чтобы таблетка выводилась из матрицы на поверхность стола, затем ротором таблетка (7) подводится к ножу (5), который направляет ее на лоток и далее в приемную тару.
В двухпоточной машине модели РТМ за один оборот ротора дважды повторяется описанный выше технологический цикл.
Достаточно широко в таблеточных цехах отечественных химико-фармацевтических заводов применяется роторная таблеточная машина РТМ-41М2В. Машина имеет 41 пару пресс-инструмента при максимальной глубине заполнения матрицы 18 мм. Диаметр прессуемых таблеток 4-20 мм. Максимальное усилие прессования 100 кН. Производительность достигает 209 тыс. штук в час.
Роторнарная таблеточная машина типа РТМ-3028 имеет устройство вакуумной подачи порошков в матрицу. В момент загрузки материала через отверстие, соединенное с вакуумной линией, из полости матрицы отсасывается воздух. При этом порошок поступает в матрицу под действием вакуума, что обеспечивает высокую скорость заполнения и одновременно повышает точность дозирования. РТМ-3028 рекомендована для прямого прессования. Однако предусмотренная конструкция вакуумного заполнения оказалась недостаточно надежной, так как быстро засорялась порошком.
Роторные пресс-автоматы модели РТМ-41МЗ оснащены вибрационным питателем, который может за счет регулировки амплитуды и частоты колебаний вибрационной, заполняющей части питателя разрывать силы сцепления между частицами порошка, благодаря чему значительно повышается его подвижность и как бы компенсируется недостаток сыпучести. Производительность автоматов РТМ-41МЗ, оснащенных вибрационными питателями, повышается в 1,5-1,8 раза по сравнению с РТМ-41М2В. Однако исследователи считают, что и в этом случае грануляция необходима, но с небольшим снижением требований к однородности гранулята.
Современные таблеточные машины взрывобезопасны.
Таблеточные машины комплектуются установкой для сбора потерь таблеточной массы при изготовлении и фасовке, оборудованы приборами для автоматического контроля таблеток на металлические включения, которые не только обнаруживают, но и извлекают из потока таблетки, имеющие металлические включения. Минимальные размеры обнаруживаемых металлических включений 0,5 мм при средней скорости непрерывного потока таблеток 100 тыс. штук в час.
Для автоматического контроля массы таблеток при производстве их на машинах типа РТМ-41 используется устройство, состоящее из блока отбора таблеток, преобразователя, блока контроля и сигнализации. Сигнал с преобразователя поступает в блок контроля и сигнализации, где он сравнивается с заранее заданным сигналом, соответствующим определенной массе таблетки. В случае отклонения массы таблетки от номинала загорается сигнальная лампа. Производительность устройства не менее 2000 операций в час при массе контролируемой таблетки от 0,15 до 0,75 г.
Для удаления с поверхности таблеток, выходящих из пресса, пылевых фракций применяются обеспылеватели. Таблетки проходят через вращающийся перфорированный барабан и очищаются от пыли (заусениц и неровностей), которая отсасывается из обеспылевателя пылесосом.
Эксплуатация таблеточных машин и пресс-инструмента
КТМ используются только в условиях лаборатории, промышленного значения не имеют в виду своей малой производительности. РТМ в техническом отношении далеко превосходят КТМ, поэтому находят широкое применение на фармацевтических предприятиях.
Перед прессованием любая таблеточная машина должна быть тщательно выверена и отрегулирована. Затем проводят пробное таблетирование (пуская машину вручную), в результате которого добиваются необходимой массы таблеток, должной прочности и распадаемости, а также устранения внешних изъянов таблеток. Если, например, таблетка выталкивается с поврежденной или неровной поверхностью, это указывает, что масса сильно прилипает или недостает скользящих веществ, или прессующие поверхности недостаточно гладки. Если у таблетки имеются кромки, то мал диаметр пуансона. Если поверхность таблетки сбита, то нижний пуансон поднимается недостаточно высоко. Если таблетки при выбрасывании рассыпаются, то либо давление слишком мало, либо (что значительно хуже) в массе мало связывающих веществ. Расслаивание таблеток свидетельствует о слишком высоком давлении или о том, что гранулят слишком сух.
Первые таблетки обычно запачканы машинным маслом, поэтому их отбрасывают. Только после устранения всех недостатков можно начинать серийное таблетирование. Особенно бережного отношения к себе требует пресс-инструмент. В отдельных руководствах его даже сравнивают с отношением хирурга к операционным инструментам.
Многочисленные наблюдения за эксплуатацией пресс-инструмента показывают, что в первую очередь изнашивается матрица. Скорость ее износа в 3-4 раза выше скорости износа нижнего пуансона; верхний пуансон изнашивается в меньшей степени, чем нижний. В матрице износ локализуется в основном в зоне прессования. Очень важно, чтобы зазор между стенками пуансона и матрицы был минимальным. Попадание сыпучего материала в зазоры может приводить к заеданию толкателей и поломке пресс-инструмента.
Прямое прессование
Прямое прессование – это процесс прессования негранулнрованных порошков. Оно обладает рядом преимуществ:
- из технологической схемы производства таблеток (см. рис. 6) следует, что прямое прессование позволяет исключить 4-ре технологические операции и, таким образом, сократить время производства;
- позволяет понизить себестоимость продукта;
- исключает разложение лекарственных веществ, возможное при влажном гранулировании под действием влаги и температуры;
- снижает побочное действие лекарственных препаратов за счет снижения продуктов разложения;
- повышает срок годности таблеток.
Однако, несмотря на кажущиеся преимущества, прямое прессование медленно внедряется в производство. Это объясняется тем, что для производительной работы таблеточных машин прессуемый материал должен обладать оптимальными технологическими характеристиками (сыпучестью, прессуемостью, влажностью и др.). Такими характеристиками обладает лишь небольшое число негранулированных порошков, таких как натрия хлорид, калия йодид, натрия и аммония бромид, гексаметилентетрамин, бромкамфора, ПАСК-натрий и другие вещества, имеющие изометрическую форму частиц, приблизительно одинакового гранулометрического состава и, как правило, не содержащие большого количества мелких фракций (т. е. частиц размером менее 0,1 мм). Они способны к самопроизвольному объемному дозированию и достаточно хорошо прессуются. При этом бромиды, хлориды и йодиды прессуют непосредственно, без вспомогательных веществ, предварительно просушив до оптимальной влажности и отсеяв от крупных и пылевидных частиц. При прямом прессовании бромкамфоры, гексаметилентетрамина и ПАСК-натрия в состав массы для прессования вводят разрыхляющие и антифрикционные вещества.
Выделяют три основных направления обеспечения прямого прессования:
- добавление вспомогательных веществ, улучшающых технологические свойства таблетируемого материала;
- предварительная направленная кристаллизация лекарственных веществ;
- принудительная подача таблетируемого материала из загрузочной воронки в матрицу.
Первое направление позволяет улучшить технологические свойства таблетируемого материала. При этом используют вспомогательные вещества:
- обладающие хорошей сыпучестью за счет зернистости и небольшой удельной поверхности (гранулированный маннит, сорбит, микрокристаллическая целлюлоза, лактоза, высушенная распылением, обезжиренный молочный порошок);
- обладающие хорошей прессуемостью (натрия хлорид, микрокристаллическая целлюлоза, кальция дифосфат, безводная или распылительно высушенная лактоза);
- уменьшающие трение между частицами (аэросил, кальция силикат (аэрогель), модифицированные крахмалы, кислота стеариновая, магния и кальция стеараты).
Для прямого таблетирования лекарственных веществ, применяемых в малых дозировках (например, витамины, гормоны и др.), интерес представляют наполнители, обладающие хорошей прессуемостью даже в присутствии лекарственных веществ. Часто с этой целью применяют лактозу безводную или высушенную распылением, микрокристаллическую целлюлозу и кальция дифосфат. Безводная лактоза способна к прямому прессованию и имеет хорошую текучесть. Она не теряет свойств таблетируемости даже при измельчении до тонкого порошка, хотя при этом ее текучесть и уменьшается. Лактоза, высушенная распылением, состоит из микрокристаллов, частичек аморфной и стекловидной структуры. Основная масса частиц имеет сферическую форму, обеспечивающую хорошую текучесть материала. Благодаря сочетанию частиц и микрокристаллов лактоза обладает хорошей прессуемостью. Недостатком ее является побурение в присутствии веществ основного характера и ухудшение текучести после измельчения. При высыхании и потере воды, обычно присутствующей в лактозе, она теряет способность к прямому прессованию. Микрокристаллическая целлюлоза, получаемая жестким гидролизом целлюлозы специальных сортов древесины, значительно повышает прессуемость. Добавления 5-20% микрокристаллической целлюлозы к лекарственным веществам бывает достаточно для придания смеси способности к прямому прессованию. Кальция дифосфат двуводный в основном применяется в смеси с другими наполнителями для прямого прессования, такими как микрокристаллическая целлюлоза, лактоза, крахмал. Отмечено, что прямое прессование облегчается при добавлении гранулированных маннита и сорбита, смесей лактозы с мальтозой, крахмалом или микрокристаллической целлюлозой и др. Иногда добавление небольшого количества таких веществ как аэросил, кальция силикат (аэрогель), модифицированные крахмалы, делает смесь пригодной для прямого прессования. Так, оптимальное количество аэросила, добавляемого для улучшения текучести смеси, составляет 0,05-1,0 %.
Второе направление позволяет получить таблетируемые вещества в кристаллах заданной сыпучести, прессуемости и влажности путем подбора определенных условий кристаллизации или перекристаллизацией уже готовых лекарственных веществ в определенном режиме. В РФ этим методом получают кислоты – ацетилсалициловую и аскорбиновую (с определенными размерами кристаллов).
Третье направление возможно при наличии в загрузочной воронке таблеточных машин питателей-дозаторов, обеспечивающих загрузку таблетируемого материала в матрицу. По конструкции питатели-дозаторы могут быть вибрационные, вибро-механические, шнековые и вакуумные. Вакуумные питатели-дозаторы являются наиболее распространенными, т.к. не только подают таблетируемый материал, но и уплотняют, удаляя из него воздух.
Питатели-дозаторы ротационных таблеточных машин могут обеспечить заполнение полости матриц порошками с плохой сыпучестью, но скорость заполнения будет ниже оптимальной. Показано, что при повышении сыпучести с 1,92 до 26 см/с, т. е. в диапазоне от порошка плохой сыпучести до материала высокой сыпучести, скорость заполнения матрицы, эквивалентная производительности РТМ, возрастала в 8,8 раз.
Прямое прессование в современных условиях – это прессование смеси, состоящей из лекарственных веществ, наполнителей и вспомогательных веществ. Существенным требованием к методу прямого прессования является необходимость обеспечения однородности содержания активного компонента. Особенно повышены требования к качеству многокомпонентной смеси с небольшим содержанием активных веществ. Чтобы добиться высокой однородности смеси, необходимой для обеспечения лечебного эффекта каждой таблетки, стремятся к наиболее тонкому помолу лекарственного вещества.
Анализ состава лекарственных препаратов, описанных в ГФ X, показал, что примерно 55% из них содержат 50-100% лекарственного вещества от массы таблетки и могут быть смешаны с высокой степенью равномерности. В роли критического компонента (т. е. содержащегося в минимальном количестве) выступают скользящие и разрыхляющие вещества, которые должны быть высокодисперсными. Однако почти 40% лекарственных препаратов, содержащих 10% и менее лекарственного вещества от массы таблетки, требуют тщательного смешивания и высокой дисперсности частиц всех компонентов. Такие смеси обладают низкой текучестью.
Трудности прямого прессования связаны также с дефектами таблеток, такими как расслоение и трещины. При прямом прессовании чаще всего отделяются верхушка и низ таблетки в виде конусов. Одной из основных причин образования трещин и расслоений в таблетках является неоднородность их физических, механических и реологических свойств из-за влияния внешнего и внутреннего трения и упругой деформации стенок матрицы. Внешнее трение ответственно за перенос массы порошка в радиальном направлении, что приводит к неравномерности плотности таблетки. При снятии давления прессования из-за упругой деформации стенок матрицы таблетка испытывает значительные напряжения сжатия, которые приводят к трещинам в ее ослабленных сечениях за счет неравномерной плотности таблетки из-за внешнего трения, ответственного за перенос массы порошка в радиальном направлении.
Оказывает влияние и трение о боковую поверхность матрицы во время выталкивания таблетки. Причем чаще всего расслоение наступает в момент, когда часть таблетки выходит из матрицы, так как в это время проявляется упругое последействие части таблетки при выталкивании из матрицы, в то время как часть ее, находящаяся в матрице, еще не имеет возможности свободно деформироваться. Установлено, что на неравномерность распределения сил прессования по диаметру таблетки оказывает влияние форма пуансонов. Плоские без фасок пуансоны способствуют получению самых прочных таблеток. Наименее прочные таблетки со сколами и расслоениями наблюдались при прессовании пуансонами с глубокой сферой. Плоские пуансоны с фаской и сферические с нормальной сферой занимают промежуточное положение. Отмечено также, что чем выше давление прессования, тем больше предпосылок для образования трещин и расслоений.
Таким образом, в настоящее время прямое прессование применяется для ограниченного круга лекарственных веществ. Поэтому гранулирование остается основной технологической операцией при подготовке масс к таблетированию.
ТП-3.3. (3.7.). Покрытие таблеток оболочками
В тех случаях, когда это предусматривает регламент, таблетки покрывают оболочками. Нанесение оболочек преследует следующие цели: придать таблеткам красивый внешний вид, увеличить их механическую прочность, скрыть неприятный вкус, запах и пачкающие свойства таблеток, защитить от воздействия окружающей среды (света, влаги, кислорода воздуха и т. д.), локализовать или пролонгировать действие лекарственного вещества, содержащегося в таблетке, защитить слизистые оболочки пищевода и желудка от разрушающего действия лекарственного вещества.
Покрытия, наносимые на таблетки, в зависимости от их состава и способа нанесения можно разделить на три группы: дражированные, пленочные и прессованные.
Дата добавления: 2015-09-10; просмотров: 352820 | Поможем написать вашу работу | Нарушение авторских прав |