Студопедия  
Главная страница | Контакты | Случайная страница

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатика
ИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханика
ОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторика
СоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансы
ХимияЧерчениеЭкологияЭкономикаЭлектроника

Сумма и разность целых неотрицательных чисел с точки зрения теоретико-множественного подхода (определение, теорема существования суммы, свойства сложения, правила вычитания).

Читайте также:
  1. B) По применимости к ним тех или иных форм уравнений кинетики, как сумма степеней концентрации
  2. Cтенограмма из лекции 4 правила,лектор Руслана абу Ибрахима,подробный разбор о запрете фото и видео.
  3. I Кислотно-основные свойства.
  4. I Кислотные и основные свойства
  5. I. Основные свойства живого. Биология клетки (цитология).
  6. I. ПОЧЕМУ МЫ ДОЛЖНЫ ИЗУЧАТЬ СТОРОНЫ И СВОЙСТВА ПЕДАГОГИЧЕСКОГО ПРОЦЕССА?
  7. I. Правила ведения дневника
  8. I. Правила оформления отчета по практике
  9. I. Правила оформления отчета по практике
  10. I. Правила терминов
Помощь в написании учебных работ
1500+ квалифицированных специалистов готовы вам помочь

В курсе математ нач классов находит отражение теоретико-множественный подход к истолкованию сложения и вычитания целых неотрицат чисел., в соответствии с которым сложение целых неотрицательн чисел связано с операцией объединения попарно непересекающихся конечных множеств, вычитание- с операцией дополнения выделенного подмножества. Этот подход легко интерпритируется на уровне предметных действий, позволяя тем самым учитывать психологические особенности детей.

Однако методич интерпретация подхода может быть различной. В учебнике моро в качестве основного средства формирования у детей представлений о смысле действий + и – выступают простые текстовые задачи. В онове другого подхода лежит выполнение учащ предметных действий и их интерпретация в виде графических символических моделей. В качестве основной цели здесь выступает не решение простых задач, а осознание предметного смысла числовых выражений и равенств. Деятельность учащ-ся сначала сводится к переводу предметных действий на язык математики, а затем к установлению соответствия между различными моделями.

Свойства сложения

Переместительное свойство сложения

От перестановки слагаемых сумма не меняется.

В буквенном виде свойство записывается так:

a + b = b + a

В этом равенстве буквы a и b могут принимать любые натуральные значения и значение 0.

Сочетательное свойство сложения

Чтобы к сумме двух чисел прибавить третье число можно к первому числу прибавить сумму второго и третьего числа.

В буквенном виде:

(a + b) + c = a + (b + c)

Так как результат сложения трёх чисел не зависит от того как поставлены скобки, то скобки можно не ставить и писать просто a + b + с.

(a + b) + c = a + (b + c) = a + b + c

Переместительное и сочетательное свойство сложения позволяют сформулировать правило преображения сумм.

При сложении нескольких чисел их можно как угодно объединять в группы и переставлять.

Свойство нуля при сложении

Сумма двух натуральных чисел всегда больше каждого из слагаемых. Но это не так, если хотя бы одно из слагаемых равно нулю.

Если к числу прибавить нуль, получится само число.

a + 0 = 0 + a = a

Свойства вычитания

Свойство вычитания суммы из числа

Чтобы вычесть сумму из числа, можно из него вычесть одно слагаемое и затем из результата вычесть другое слагаемое.

a - (b + c) = (a - b) – c или a - (b + c) = (a - с) - b

Скобки в выражении (a - b) - c не имеют значения и их можно опустить.

(a - b) - c = a - b - c

Свойство вычитания числа из суммы

Чтобы вычесть число из суммы, можно вычесть его из одного слагаемого, а к результату прибавить оставшееся слагаемое.

(a + b) - c = (a - c) + b (если a > c или а = с) или (a + b) - c = (b - c) + a (если b > c или b = с)

Свойство нуля при вычитании

Если из числа вычесть нуль, получится само число.

a - 0 = a

Если из числа вычесть само число, то получится нуль.

a - a = 0

Методические особенности раскрытия младшим школьникам конкретного смысла действий сложения и вычитания целых неотрицательных чисел (цели, содержание, особенности организации процесса овладения содержанием, методические приемы работы учителя).

Целью изучения + и – в нач шк следует считать формирование у школьников осознанных и прочных доведенных до автоматизма навыков + и -.

Содержание: в традиционной системе тема «сложен и вычит» изучается на протяжении всех лет обучения.

Многие методисты выделяют 4 этапа вычислительного приема:

1.подготовительный период для изучен + и – начин еще в разделе нумерация. При знакомстве с числами в пределах 10, т.к. нумерация заканчив простейшими арифметическими действиями. Здесь дети знаком со случаями: □+1и □-1 которые истолковываются как способы образования чисел в натуральном ряду.

2.прием + и – числа по его частям. Этот прием является универсальным. Он может быть использован к любому случаю +/-. Но для его использования необходимо обладать определенными знаниями. Он рационален для случаев +/-2,3,4.

3.прием + двух чисел основанный на переместит законе сложен, этот прием применим в случае □+5,6,7,8,9. Его применен позволяет уменьшить число случаев для запоминания.

4.прием вычит основан на взаимосвязи + и -. Для применен этого приема необходимо, прочное знание детьми состава чисел первого десятка. И умение находить неизвестные слаг. по сумме других слагаемых.

Можно условно выделить три вида ситуаций, связанных с операцией объединения или сложения:

1.увеличение данного множества на несколько предметов

2.увеличение на несколько предметов множества, равночисленного данному

3.составление одного предметного множества из двух данных

В процессе выполнения предметных действий у ребенка формируется представление о сложении как о действии, которое связано с увеличением количества предметов. Указанием к выполнению предметных действий может явиться задание- покажи. Например : у коли было 4 марки ему подарили еще 2, покажи сколько марок стало у коли. Дети выклад марки и показыв ск-ко марок у коли. Далее выясняется как можно записать выполненное предметное действие матем знаками. Для разъяснения смысла сложения можно оприраться на представления детей о соотношении целого и его частей. В этом случае все марки коли это целое будет состоять из двух частей- маркт которые были и которые подарили. Обозначая целое и части числовыми значениями у них получается выражение.

При формиров представлен о вычитан можно ориентир на следующие предметные ситуации:

1.уменьшен данного предметного мн-ва на несколько предметов

2.уменьшен мн-ва, равночисленного данному на несколько предметов

3.сравнение двух предметных множеств

В процессе выполнения предметных действий у младших школьников формируется представление о вычитании как о действии которое связано с уменьшением количества предметов. Например: у маши было 6 шаров, 2 она подарила саше, покажи шары которые у нее остались. Дети записывают и показывают кол-во оставшихся шаров.

Для разъяснения смысла вычитан можно использов представлен детей о соотношен целого и части. Часть всегда меньше целого поэтому нахождение части связано с вычитанием.

Доверь свою работу кандидату наук!
1500+ квалифицированных специалистов готовы вам помочь



Дата добавления: 2014-12-20; просмотров: 92 | Нарушение авторских прав




lektsii.net - Лекции.Нет - 2014-2022 год. (0.019 сек.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав