Студопедия  
Главная страница | Контакты | Случайная страница

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатика
ИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханика
ОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторика
СоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансы
ХимияЧерчениеЭкологияЭкономикаЭлектроника

Равномерная непрерывность функции

Читайте также:
  1. Cущноcть, функции и клаccификация cоциальных технологий в cоциально-культурном cервиcе
  2. Funcio laesa (нарушение функции).
  3. I. Общая теория и функции систематической теории
  4. I. Функционалы , зависящие от одной функции
  5. II.1. Функции специального федерального государственного образовательного Стандарта для детей с нарушениями речи
  6. IV. Порядок и формы контроля за исполнением государственной функции
  7. А) Основные психофизические функции
  8. Алгоритм нахождения точек перегиба функции.
  9. Асимптоты графика функции
  10. Асимптоты графика функции

Пусть функция непрерывна на отрезке (или интервале, полуинтервале). Тогда для каждой точки этого отрезка (интервала, полуинтервала) по заданному найдется такое, что

,

как только

.

При изменении при постоянном число , вообще говоря, изменяется – оно зависит не только от , но и от . Как видно из рис. 29, число , пригодное на участке с пологим графиком, может оказаться слишком большим для участка с круто поднимающимся графиком.

Рис. 29

В связи с этим естественно выделить те непрерывные функции, для которых при данном можно указать , пригодное сразу для всех , принадлежащих тому множеству, где задана функция.

Начнем с определения.

О п р е д е л е н и е 1. Функция , определенная на множестве , называется равномерно непрерывной на этом множестве, если для всякого найдется , зависящее только от , такое, что

для всех , удовлетворяющих неравенству .

Легко видеть, что если функция равномерно непрерывна на множестве , то тем более она равномерно непрерывна на любом его подмножестве . Обратное, вообще говоря, неверно.

Т е о р е м а 1. Если функция определена и непрерывна на отрезке , то она равномерно непрерывна на нем.

Д о к а з а т е л ь с т в о. Допустим, что теорема неверна. Тогда существует такое , что для любого найдется пара точек , удовлетворяющих неравенству , для которых

.

Зададим стремящуюся к нулю последовательность положительных чисел . Для каждого найдутся точки такие, что

, но . (1)

Так как последовательности принадлежат к , то эта последовательность ограничена и из нее по теореме Больцано-Вейерштрасса можно выделить подпоследовательность , сходящуюся к некоторой точке . Так как , , то подпоследовательность тоже сходится к точке . По условию функция непрерывна на и, следовательно, непрерывна в точке . Конечно, если или , то надо считать, что непрерывна в справа или соответственно слева. Поэтому

.

После перехода к пределу в (1) при получим

, (2)

и мы пришли к противоречию: .

Заметим, что в (2) мы воспользовались непрерывностью функции (см. § 3.3, пример 8). Теорема доказана.

П р и м е р 1. Функция

непрерывна на отрезке , поэтому на основании теоремы 1 она равномерно непрерывна на этом отрезке.

С другой стороны, на полуинтервале эта функция хотя и непрерывна, но не является равномерно непрерывной. Это показывает, что требование в теореме 1, чтобы непрерывная функция была задана на отрезке, а не на интервале, существенно.

Убедимся в том, что наша функция не является равномерно непрерывной на . Точки , очевидно, принадлежат полуинтервалу , и для них

.

Если задать , то при любом найдется такое , что

,

между тем как

.

Из сказанного следует, что нашу функцию нельзя продолжить на отрезок , доопределив ее в точке так, чтобы она стала непрерывной на , потому что тогда, согласно теореме 1, она была бы равномерно непрерывной на , а следовательно, и на , чего быть не может.

Точки разрыва и их классификация.

 

Рассмотрим некоторую функцию f(x), непрерывную в окрестности точки х0, за исключением может быть самой этой точки. Из определения точки разрыва функции следует, что х = х0является точкой разрыва, если функция не определена в этой точке, или не является в ней непрерывной.

Следует отметить также, что непрерывность функции может быть односторонней. Поясним это следующим образом.

Если односторонний предел (см. выше) , то функция называется непрерывной справа.

 

 
 

 


х0

 

 

Если односторонний предел (см. выше) , то функция называется непрерывной слева.

 
 

 

 


х0

 

Определение. Точка х0 называется точкой разрыва функции f(x), если f(x) не определена в точке х0 или не является непрерывной в этой точке.

 

Определение. Точка х0 называется точкой разрыва 1- го рода, если в этой точке функция f(x) имеет конечные, но не равные друг другу левый и правый пределы.

 

Для выполнения условий этого определения не требуется, чтобы функция была определена в точке х = х0, достаточно того, что она определена слева и справа от нее.

Из определения можно сделать вывод, что в точке разрыва 1 – го рода функция может иметь только конечный скачок. В некоторых частных случаях точку разрыва 1 – го рода еще иногда называют устранимой точкой разрыва, но подробнее об этом поговорим ниже.

 

Определение. Точка х0 называется точкой разрыва 2 – го рода, если в этой точке функция f(x) не имеет хотя бы одного из односторонних пределов или хотя бы один из них бесконечен.

 

Пример. Функция Дирихле (Дирихле Петер Густав(1805-1859) – немецкий математик, член- корреспондент Петербургской АН 1837г)

не является непрерывной в любой точке х0.

Пример. Функция f(x) = имеет в точке х0 = 0 точку разрыва 2 – го рода, т.к.

.

 

Пример. f(x) =

Функция не определена в точке х = 0, но имеет в ней конечный предел , т.е. в точке х = 0 функция имеет точку разрыва 1 – го рода. Это – устранимая точка разрыва, т.к. если доопределить функцию:

 

 

График этой функции:

 

 

Пример. f(x) = =

 

y

 

 

 

0 x

 

-1

 

 

Эта функция также обозначается sign(x) – знак х. В точке х = 0 функция не определена. Т.к. левый и правый пределы функции различны, то точка разрыва – 1 – го рода. Если доопределить функцию в точке х = 0, положив f(0) = 1, то функция будет непрерывна справа, если положить f(0) = -1, то функция будет непрерывной слева, если положить f(x) равное какому- либо числу, отличному от 1 или –1, то функция не будет непрерывна ни слева, ни справа, но во всех случаях тем не менее будет иметь в точке х = 0 разрыв 1 – го рода. В этом примере точка разрыва 1 – го рода не является устранимой.

 

Таким образом, для того, чтобы точка разрыва 1 – го рода была устранимой, необходимо, чтобы односторонние пределы справа и слева были конечны и равны, а функция была бы в этой точке не определена.

 




Дата добавления: 2015-09-10; просмотров: 57 | Поможем написать вашу работу | Нарушение авторских прав

Необходимость доказана. | Арифметические операции над функциями, имеющими предел. | Первый замечательный предел | Но самостоятельно переставлять числитель и знаменатель нельзя! Если дан предел в виде, то и решать его нужно в таком же виде, ничего не переставляя. | Второй замечательный предел | БЕСКОНЕЧНО МАЛЫЕ ФУНКЦИИ И ИХ ОСНОВНЫЕ СВОЙСТВА | Пример. . | Примеры. | ОДНОСТОРОННИЕ ПРЕДЕЛЫ | И СПОСОБЫ ИХ РАСКРЫТИЯ |


lektsii.net - Лекции.Нет - 2014-2024 год. (0.013 сек.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав