Читайте также:
|
|
Основная статья: Проблема энергии, импульса и момента импульса в общей теории относительности
См. также псевдотензор энергии-импульса гравитационного поля, вектор Киллинга, энергия.
Так как энергия, с точки зрения математической физики, представляет собой величину, сохраняющуюся из-за однородности времени[63], а в общей теории относительности, в отличие от специальной, вообще говоря, время неоднородно[64], то закон сохранения энергии может быть выражен в ОТО только локально, то есть в ОТО не существует такой величины, эквивалентной энергии в СТО, чтобы интеграл от неё по пространству сохранялся при движении по времени. Локальный же закон сохранения энергии-импульса в ОТО существует и является следствием уравнений Эйнштейна:
где точка с запятой обозначает взятие ковариантной производной. Переход от него к глобальному закону невозможен, потому что так интегрировать тензорные поля, кроме скалярных, в римановом пространстве, чтобы получать тензорные (инвариантные) результаты, вообще говоря, математически невозможно.
Многие физики считают это существенным недостатком ОТО. С другой стороны, очевидно, что если соблюдать последовательность до конца, в полную энергию, кроме энергии материи, необходимо включать также и энергию самого гравитационного поля. А последняя не может быть хорошо определена (как тензор), что является ещё одним аспектом проблемы. Различными авторами вводятся так называемые псевдотензоры энергии-импульса гравитационного поля, которые обладают некими «правильными» свойствами, но одно их многообразие показывает, что удовлетворительного решения задача не имеет. В общем случае проблема энергии и импульса может считаться решённой только для островных систем, то есть таких распределений массы, которые ограничены в пространстве, и пространство-время которых на пространственной бесконечности переходит в пространство Минковского. Тогда, выделяя группу асимптотической симметрии пространства-времени (группу Бонди-Сакса), можно определить 4-векторную величину энергии-импульса системы, правильно ведущую себя относительно преобразований Лоренца на бесконечности[65].
Существует необщепринятая точка зрения, восходящая к Лоренцу и Леви-Чивита, которая определяет тензор энергии-импульса гравитационного поля как тензор Эйнштейна с точностью до постоянного множителя. Тогда уравнения Эйнштейна утверждают, что энергия-импульс гравитационного поля в любом объёме точно уравновешивает энергию-импульс материи в этом объёме, так что полная их сумма всегда тождественно равна нулю[66].
В недавней работе [67] было показано, что принцип эквивалентности не выполняется в отношении массы-энергии самого гравитационного поля. В частности, гравитационная масса-энергия поля неподвижного тела, и инертная масса-энергия поля движущегося с постоянной скоростью этого же тела не совпадают друг с другом. Эта ситуация ставит перед ОТО ряд дополнительных вопросов.
Дата добавления: 2015-01-07; просмотров: 114 | Поможем написать вашу работу | Нарушение авторских прав |