Читайте также:
|
|
Виділимо в середовищі, де поширюється плоска поздовжня хвиля, такий елементарний об'єм dV, щоб швидкість руху й деформації в усіх точках цього об'єму можна було вважати незмінними, які відповідно дорівнюють і . Знайдемо кінетичну і потенціальну енергію виділеного об’єму:
,
де r – густина середовища. Підставивши , матимемо:
.
Потенціальна енергія пружної деформації виділеного об'єму середовища дорівнюватиме: , де – відносна деформація в хвилі, Е – модуль Юнга. Підставивши в останню рівність квадрат похідної , а замість модуля , дістанемо: . Із отриманих виразів свідчить, що зміна потенціальної енергії в часі і просторі аналогічна зміні кінетичної енергії; інакше кажучи, максимуми потенціальної енергії припадають саме на ті області середовища, в яких максимальна кінетична енергія. Повна енергія виділеного об'єму середовища в даний момент часу:
.
Поділивши вираз на dV, знайдемо миттєву густину енергії в різних точках простору: . Із отриманої формули випливає, що для фіксованої точки хвилі густина змінюється в часі пропорційно до квадрата косинуса. Оскільки середнє значення квадрата косинуса дорівнює 1/2, то середнє в часі значення густини енергії в кожній точці хвилі дорівнює: .
Отже, при поширенні хвилі середовище дістає додаткову енергію, яку приносить хвиля від джерела. Кількість енергії, яку переносить хвиля через деяку поверхню S за час t, називають потоком енергії Ф через цю поверхню. Кількість енергії, що переноситься хвилею через поверхню в 1 м2, орієнтовану перпендикулярно до напряму поширення хвилі, за 1 с, називають густиною потоку енергії; її позначають буквою j За фізичним змістом потік – це векторна величина: або , де – вектор фазової швидкості, що збігається з напрямом поширення хвилі. Вектор густини потоку енергії називають вектором Умова.
Дата добавления: 2014-12-15; просмотров: 167 | Поможем написать вашу работу | Нарушение авторских прав |