Студопедия  
Главная страница | Контакты | Случайная страница

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатика
ИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханика
ОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторика
СоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансы
ХимияЧерчениеЭкологияЭкономикаЭлектроника

Обычный алгоритм Монте-Карло интегрирования

Читайте также:
  1. Алгоритм взятия мазка из носа и зева.
  2. Алгоритм внутривенной инъекции
  3. Алгоритм выбора Н или НН в разных частях речи
  4. Алгоритм выполнения задания
  5. Алгоритм выполнения расчетов.
  6. Алгоритм действий медсестры при критическом снижении температуры
  7. Алгоритм действия.
  8. Алгоритм действия.
  9. Алгоритм действия.
  10. Алгоритм Деккера

Рисунок 3. Численное интегрирование функции методом Монте-Карло

Для определения площади под графиком функции можно использовать следующий стохастический алгоритм:

· ограничим функцию прямоугольником (n -мерным параллелепипедом в случае многих измерений), площадь которого Spar можно легко вычислить;

· «набросаем» в этот прямоугольник (параллелепипед) некоторое количество точек (N штук), координаты которых будем выбирать случайным образом;

· определим число точек (K штук), которые попадут под график функции;

· площадь области, ограниченной функцией и осями координат, S даётся выражением

Для малого числа измерений интегрируемой функции производительность Монте-Карло интегрирования гораздо ниже, чем производительность детерминированных методов. Тем не менее, в некоторых случаях, когда функция задана неявно, а необходимо определить область, заданную в виде сложных неравенств, стохастический метод может оказаться более предпочтительным.

Имитационное моделирование на цифровых вычислительных машинах является одним из наиболее мощных средств исследования, в частности, сложных динамических систем. Как и любое компьютерное моделирование, оно дает возможность проводить вычислительные эксперименты с еще только проектируемыми системами и изучать системы, натурные эксперименты с которыми, из-за соображений безопасности или дороговизны, не целесообразны. В тоже время, благодаря своей близости по форме к физическому моделированию, это метод исследования доступен более широкому кругу пользователей.

Одним из главных достоинств систем визуального моделирования является то, что они позволяют пользователю не заботится о программной реализации модели, как о последовательности исполняемых операторов, и тем самым создают на компьютере некоторую чрезвычайно удобную среду, в которой можно создавать виртуальные, "квазиаппаратные" параллельно функционирующие системы и проводить эксперименты с ними. Графическая среда становится похожей на физический испытательный стенд, только вместо тяжелых металлических ящиков, кабелей и реальных измерительных приборов, осциллографов и самописцев пользователь имеет дело с их образами на экране дисплея. Образы можно перемещать, соединять и разъединять с помощью мыши. Кроме того, пользователь может видеть и оценивать результаты моделирования по ходу эксперимента и, при необходимости, активно в него вмешиваться.

Программная реализация виртуального стенда скрыта от пользователя. Для проведения экспериментов не требуется никаких особых знаний о компьютере, операционной системе и математическом обеспечении. Можно сказать, что виртуальный стенд превращает цифровую вычислительную машину в невиданно точную и удобную аналоговую. Таким образом, прогресс средств автоматизации моделирования приводит нас на следующем витке спирали развития к истокам вычислительной техники.

Еще одной важной особенностью современного пакета автоматизации моделирования является использование технологии объектно-ориентированного моделирования, что позволяет резко расширить границы применимости и повторного использования уже созданных и подтвердивших свою работоспособность моделей.

Успех новой технологии резко расширил круг пользователей визуальных пакетов моделирования, что обострило вечную проблему достоверности получаемых решений. Графическая оболочка скрывает от пользователя сложную процедуру получения численного решения. В то же время, автоматический выбор нужного для решения конкретной задачи численного метода и настройка его параметров часто являются далеко не тривиальной задачей. В результате появляется опасность быстрого получения красиво оформленных, но неправильных результатов.

Имитационное моделирование (simulation) является одним из мощнейших методов анализа экономических систем.

В общем случае, под имитацией понимают процесс проведения на ЭВМ экспериментов с математическими моделями сложных систем реального мира.

Цели проведения подобных экспериментов могут быть самыми различными - от выявления свойств и закономерностей исследуемой системы, до решения конкретных практических задач. С развитием средств вычислительной техники и программного обеспечения, спектр применения имитации в сфере экономики существенно расширился. В настоящее время ее используют как для решения задач внутрифирменного управления, так и для моделирования управления на макроэкономическом уровне. Рассмотрим основные преимущества применения имитационного моделирования в процессе решения задач финансового анализа.

Как следует из определения, имитация - это компьютерный эксперимент. Единственное отличие подобного эксперимента от реального состоит в том, что он проводится с моделью системы, а не с самой системой. Однако проведение реальных экспериментов с экономическими системами, по крайней мере, неразумно, требует значительных затрат и вряд ли осуществимо на практике. Таким образом, имитация является единственным способом исследования систем без осуществления реальных экспериментов.

Часто практически невыполним или требует значительных затрат сбор необходимой информации для принятия решений. Например, при оценке риска инвестиционных проектов, как правило, используют прогнозные данные об объемах продаж, затратах, ценах и т.д.

Однако чтобы адекватно оценить риск необходимо иметь достаточное количество информации для формулировки правдоподобных гипотез о вероятностных распределениях ключевых параметров проекта. В подобных случаях отсутствующие фактические данные заменяются величинами, полученными в процессе имитационного эксперимента (т.е. сгенерированными компьютером).

При решении многих задач финансового анализа используются модели, содержащие случайные величины, поведение которых не поддается управлению со стороны лиц, принимающих решения. Такие модели называют стохастическими. Применение имитации позволяет сделать выводы о возможных результатах, основанные на вероятностных распределениях случайных факторов (величин). Стохастическую имитацию часто называют методом Монте-Карло.

Существуют и другие преимущества имитации. Подробное изложение основ имитационного моделирования и его применения в различных сферах можно найти в соответствующей литературе.

Мы же рассмотрим технологию применения имитационного моделирования для анализа рисков инвестиционных проектов в среде ППП EXCEL.




Дата добавления: 2015-02-16; просмотров: 38 | Поможем написать вашу работу | Нарушение авторских прав




lektsii.net - Лекции.Нет - 2014-2024 год. (0.008 сек.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав