Студопедия
Главная страница | Контакты | Случайная страница

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатика
ИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханика
ОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторика
СоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансы
ХимияЧерчениеЭкологияЭкономикаЭлектроника

Статистикалық өзгерме және оның көрсеткіші дегеніміз не?

Читайте также:
  1. B)& ластағыш заттардың бөлшектерін ірілендіру және олардың агрегаттарға бірігу үрдісі
  2. B012300 - Әлеуметтік педагогика және өзін - өзі тану» мамандығы, 3 курс, 3кредит қ/б
  3. D) ертикальды және горизонтальды
  4. E) Билік ету, пайдалану және иелену
  5. E) шығару және орналастыру бойынша қосымша шығындар
  6. F) оның айналымының мерзімі біткенде номиналды құнын қайтару құқығы
  7. Fast Ethernet және 100VG –AniLAN технологиялары
  8. G)Республика Конституциясын және заңдарын орындау үшін
  9. I. Тақырыбы: Бас пен тұлға сүйектерінің қосылыстары: құрылысы және қызметі.
  10. I. Тақырыбы: Жамбас белдеуі мен аяқтың еркін бөлігі сүйектерінің қосылыстары, құрылысы және қызметі.

Варияция немесе өзгерме дегеніміз зерттелетін жиынтықтың кез-келген бірлігі белгісі мәнінің бір кезеңдегі және мезеттегі құбылмалылығын айтады.Өзгерме мәні:

Оның өзгеруі басқа өзгермелі белгілердің сол белгіге әсер ету деңгейін бағалауға мүмкіндік береді..Статистикалық моделбдерді құруда қолданылады.Өзгерме өлшемі деп бегінің ауытқушылығын көрсететін абсолюттік және қатысты көрсеткіштерді айтады. Вариацияның абсолюттік көрсеткіштеріне: вариация ауқымы, оташа ауытқу, дисперсия, орта квадраттық ауытқу жатады. Вариацияның қатысты көрсеткіштеріне: осцилляция коэффиценті, вариацияның сызықты коэффиценті, вариация коэффиценті жатады.Дисперсия – бұл орташа арифметикалықтан белгінің жеке мәндерінің квадраты ауытқуының орташа арифметикалығы. Дисперсия шыққан мәліметтерге байланысты орташа арифметикалық жай және салмақтанған фориулаларымен есептеледі:

- салмақталмаған (жай);

-салмақталған;

Орта квадраттық ауытқу (б) деп дисперсияның квадратының түбірін айтады.

- салмақталмаған (жай);

-салмақталған; Дисперсияға қарағанда орта квадраттық ауытқу жиынтықтағы белгінің вариациясының абсолюттік өлшемі және өзгермелі белгінің өлшем бірлігімен сипатталады.

Әр түрлі белгілердің вариациясы размерін салыстыру үшін, сонымен қатар бірнеше жиынтықтағы бірдей белгілердің вариация деңгейлерін салыстыру үшін:

Вариация коэффиценті шығарылады;

Орташа квадраттық ауытқудың орташа арифметикалыққа пайыздық қатынасы:

V=

Вариация коэффиценті шамасы бойынша белгілердің вариациясы деңгейін айтуға болады, демек жиынтықтың құрамының бірегейлігі туралы. Шамасы үлкен болған сайын, орташалық айналысындағы белгі мәнінің тасталымы көбейе түседі, соғұрлым құрамы бойынша жиынтық брегейлігі азаяды.

Вариациялық қатардың құрылымдық сипаттамасына: мода, медиана, децили, квартили, перцентили жатады.

Мода деп – зерттелетін жиынтықта басқаларына қарағанда жиі кездесетін вариантаны айтады.

Дискреттік қатарда мода деп – көп рет кездесетін белгіні айтады. Мода мысалы, сатып алушыларда үлкен сұранысқа ие киім мен аяқ киімінің размерін анықтау үшін жиі қолданылады.

Интервалды вариацияның қатарда моданы есептеу үшін алдымен мода орналасқан модальді интервалды анықтау керек, ал одан кейін белгінің модальді шамасының мәнін анықтау керек.

Медиана (Ме)- белгілі бір тәртіппен орналасқан, өсуі бойынша немесе азаюы бойынша реттелген қатардың варианттарының бірінің орташасы. Ол мұндай қатарды ортасынан бөледі. Медиананы табу үшін реттелген қатардың ортасында орналасқан белгінің мәнін табу керек. Тақ қатардағы реттелген қатардың медианасы деп ортасында тұрған белгінің шамасын айтады. Тақ қатардағы реттелген қатардың медианасы номері келесі формуламен есептеледі:

NMe= , мұнда – қатардың мүшесі саны;

 

Жұп сандағы реттелген қатардың медианасы деп қатардың ортасында орналасқан екі варианттың бірінің орташа арифметикалығын айтады.

 




Дата добавления: 2014-12-20; просмотров: 203 | Поможем написать вашу работу | Нарушение авторских прав




lektsii.net - Лекции.Нет - 2014-2025 год. (0.005 сек.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав