Читайте также:
|
|
Испытание состоит в подбрасывании игральной кости, на каждой из граней которой проставлено число очков (от 1 до 6). Какова вероятность того, что: 1) выпадает 2 очка? 2) выпадает нечетное число очков?
Решение 1: В данном испытании имеется 6 равновозможных случаев (выпадение 1, 2, 3, 4, 5, 6 очков), так как нет оснований предполагать, что появление какого-то определенного числа очков более вероятно (если, конечно, кость симметрична). Поэтому вероятность выпадения любого числа очков, в том числе и 2, при одном подбрасывании равна .
Событию А, заключающемуся в появлении нечетного числа очков, благоприятствуют три случая (выпадение 1, 3 и 5), поэтому по формуле (4.1) получаем
Решение 2: В данном испытании имеется 2 равновозможных исхода (выпадение четного числа очков (т.е. 2, 4, 6) и нечетного), так как кость симметрична, то очевидно, что эти исходы равновозможные.
Событию А, заключающемуся в появлении нечетного числа очков, благоприятствуют 1 случай из двух, поэтому по формуле (4.1) получаем
Отметим, что построенную таким образом пространство элементарных событий непригодно для расчета вероятности того, что выпадает 2 очка, так как этому событию не благоприятствует не один из введенных нами элементарных исходов.
Дата добавления: 2015-01-12; просмотров: 129 | Поможем написать вашу работу | Нарушение авторских прав |