Студопедия  
Главная страница | Контакты | Случайная страница

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатика
ИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханика
ОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторика
СоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансы
ХимияЧерчениеЭкологияЭкономикаЭлектроника

Приближение функций

Читайте также:
  1. Аппроксимация, интерполяция и экстраполяция функций
  2. Бессознательное как философская проблема. Трактовка генезиса содержания и функций бессознательного в классическом психоанализе.
  3. Билет 35. Значение лимбической системы в регуляции различных функций.
  4. Большая частота импульсов и приближение их к синусоидальной форме оказывают более слабое действие на окончания чувствительных нервов и на нервно-мышечный аппарат.
  5. В числе функций государственного земельного контроля можно выделить информационную, превентивную, а также функцию пресечения.
  6. Вероятности результатов измерения координаты и импульса. Пространство волновых функций.
  7. Взаимосвязь основных и конкретных функций управления
  8. Вопрос 27 особенности функций Российского государства на современном этапе
  9. Вопрос 33 Квалификация функций государства
  10. Вопрос № 4 . Понятие и система функций органов прокуратуры, их общая характеристика.

Если требуется найти способ приближенного вычисления значения функции в заданной точке.

Например, функция f(x) определяется как решение сложной задачи. Здесь могут быть известны некоторые свойства функции y = f(x), например, непрерывность и дифференцируемость.

Даже если функция легко вычисляется, может возникнуть необходимость её замены, например, при вычислении некоторых определенных интегралов или специальных функций математической физики (ниже будут приведены примеры). В этом случае вместо подынтегральной функции надо подобрать другую функцию, от которой интеграл легко вычисляется. Разумеется, эта новая функция должна быть приближенно равна в некотором смысле подынтегральной функции.

Если значения функции определяются в результате дорогостоящих экспериментов, могут быть найдены её значения только в некоторых точках, а для вычисления значения в произвольной точке требуется приближенный метод. При этом может быть известен вид функции, но неизвестны параметры, входящие в определение функции. В этом случае задача сводится к определению параметров известной функции.

Аппроксимацией(приближением) функции f(x) называется нахождение такой функции g(x) (аппроксимирующей функции), которая была бы близка заданной. Критерии близости функций могут быть различные.

В том случае, когда приближение строится на дискретном наборе точек(xi, yi), i = 1, 2, …, n, аппроксимацию называют точечной илидискретной.

При точечной квадратичной аппроксимации параметры a1, a2, …, am аппроксимирующей функции g = g(x, a1, a2, …, am), mn, определяются из условия:

 

.

 

Если аппроксимация проводится на непрерывном множестве точек (отрезке), аппроксимация называется непрерывнойили интегральной.

При интегральной квадратичной аппроксимации функции y = f(x) на отрезке [a, b] параметры аппроксимирующей функции g(x, a1, a2, …, am) определяются из условия:

 

 

Примером непрерывной аппроксимации может служить использование конечного числа слагаемых разложения функции в ряд Тейлора, то есть замена функции многочленом.

Наиболее часто встречающимся видом точечной аппроксимации на дискретном наборе из (n + 1)-й точки(xi, yi), i = 0, 1, …, n является интерполяция многочленом n-го порядка Pn(x), коэффициенты которого определяются из условий

yi = Pn(xi) , i = 0, 1, …n.

 

Применяя интерполяционный многочлен, можно вычислить значения функции f(x) между узлами (провестиинтерполяцию в узком смысле), а также определить значение функции за пределами заданного интервала (провести экстраполяцию). Следует иметь в виду, что погрешность экстраполяции может быть велика.

В том случае, когда интерполяционный многочлен един для всей области интерполяции, говорят, что интерполяция глобальная.Если между различными узлами интерполяционные многочлены различны, говорят о кусочной или локальной интерполяции. Простейшим случаем локальной интерполяции является кусочно-линейная интерполяция, когда в качестве интерполяционной функции выбирается полином первой степени, то есть узловые точки соединяются отрезками прямой.

 


Дата добавления: 2015-02-16; просмотров: 12 | Нарушение авторских прав




lektsii.net - Лекции.Нет - 2014-2018 год. (0.01 сек.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав