Читайте также:
|
|
Последняя операция которую осталось рассмотреть — операция деления комплексных чисел. Рассмотрим деление в показательной форме:
![]() | (23) |
Таким образом при делении комплексных чисел их модули делятся а фазы вычитаются. При делении необходимо чтобы . Получим формулу для деления комплексных чисел в явной форме. Пусть
![]() | (24) |
умножим и числитель и знаменатель дроби на число комплексно-сопряженное знаменателя:
![]() | (25) |
Исходя из (22) в знаменателе дроби получим квадрат модуля знаменателя а числитель перемножим по правилу умножения комплексных чисел:
![]() | (26) |
Поделив почленно реальную и мнимую часть числителя на знаменатель получим:
![]() | (27) |
Выражение (27) - формула деления комплексных чисел в явной форме. Как можно заметить операции сложения и вычитания удобнее выполнять в явном виде, тогда как умножать и делить комплексные числа быстрее и легче в показательной форме.
2. Действия над комплексными числами.
Дата добавления: 2014-12-20; просмотров: 84 | Поможем написать вашу работу | Нарушение авторских прав |