Читайте также:
|
|
Метод вариации постоянной.
Задача Коши
Если, кроме дифференциального уравнения, задано также начальное условие в форме y(x0) = y0, то такая задача называется задачей Коши.
Решение задачи Коши не содержит произвольной константы C. Ее конкретное числовое значение определяется подстановкой общего решения уравнения в заданное начальное условие y(x0) = y0.
Линейные дифференциальные уравнения первого порядка. Решение методом вариации произвольной константы.
Определение линейного уравнения первого порядка
Дифференциальное уравнение вида
где a(x) и b(x) − непрерывные функции x, называтся линейным неоднородным дифференциальным уравнением первого порядка. Мы рассмотрим два метода решения указанных уравнений:
Использование интегрирующего множителя;
Метод вариации постоянной
y’+p(x)y=q(x)
y’+p(x)y=0
dy/dx=-p(x)y
Данный метод аналогичен предыдущему подходу. Сначала необходимо найти общее решение однородного уравнения:
Общее решение однородного уравнения содержит постоянную интегрирования C. Далее мы заменяем константу C на некоторую (пока еще неизвестную) функцию C(x). Подставляя это решение в неоднородное дифференциальное уравнение, можно определить функцию C(x).
Дата добавления: 2015-01-30; просмотров: 110 | Поможем написать вашу работу | Нарушение авторских прав |